One Pot Synthesis of Nobel Metal (Ag) Nanoparticles and its Efficacy as Antibacterial and Antifungal Agent

Jump To References Section

Authors

  • Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal ,IN

DOI:

https://doi.org/10.24906/isc/2018/v32/i1/170656

Keywords:

Silver Nanoparticles, Green Synthesis, Antibacterial Activity, Antifungal Activity, Parthenium hysterphorus.

Abstract

In the present study, author reports a simple and eco-friendly green phytosynthesis of silver nanoparticles (AgNPs) from aqueous ischolar_main extract of Parthenium hysterphorus by reduction of silver ions. The formations of AgNPs were monitored by UV-Vis spectroscopy. The XRF analysis was revealed the existence of silver in the medium.

Downloads

Download data is not yet available.

Published

2018-01-01

How to Cite

Mondal, N. K. (2018). One Pot Synthesis of Nobel Metal (Ag) Nanoparticles and its Efficacy as Antibacterial and Antifungal Agent. Indian Science Cruiser, 32(1), 32–36. https://doi.org/10.24906/isc/2018/v32/i1/170656

Issue

Section

Search & Survey

 

References

K.O. Santos, W.C. Elias, A.M. Signori, F.C. Giacomelli, H. Yang, Domingos JB. Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. J. Phys. Chem. C. 116(7 (2012) 4594–4.

A. Hajra, N.K. Mondal, Silver nanoparticles: an eco-friendly approach for mosquito control. Int. J. Sc.i Res. Environ. Sci. 3(2) (2015) 47–1.

N.K. Mondal, A. Chowdhury, U. Dey, P. Mukhopadhya, S. Chatterjee, K. Das, et al. Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac. J. Trop. Dis. (Suppl 1) (2014) S204–10.

K. Szczepanowicz, J. Stefanska, R.O. Socha, P. Warszynski, Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem. Prob. Miner. Process. 45 (2010) 85–8.

J. Annamalai, T. Nallamuthu, Green synthesis of silver nanoparticles: characterizationand determination of antibacterial potency. Appl. Nanosci. (2016) 259–265DOI 10.1007/s13204-015-0426-6

D. Bose, S. Chatterjee, Biogenic synthesis of silver nanoparticles using guava (Psidiumguajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl. Nanosci. 6 (2016) 895–1.

K. Roy, C.K. Sarkar, C.K. Ghosh, Plant-mediated synthesis of silver nanoparticles using parsley(Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Appl. Nanosci. 5 (2015) 945–1. DOI 10.1007/s13204-014-0393-3.

A. Hajra, S. Dutta, N.K. Mondal, Mosquito larvicidal activity of cadmium nanoparticles synthesizedfrom petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J. Parasit. Dis. 40(4) (2015) 1519–7. DOI 10.1007/s12639-015-0719-4

S. Medda, A. Hajra, U. Dey, P. Bose, N.K. Mondal, Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl. Nanosci. 5 (2015) 875–80. DOI 10.1007/s13204-014-0387-1

S.P. Dubey, M. Lahtinen, M. Sillanpää, Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids. Surf. A 364 (2010) 34–1.

D. Raju, N. Paneliya, U.J. Mehta, Extracellular synthesis of silver nanoparticles using living peanut seedling. Appl. Nanosci. 4 (2014) 875–9. DOI:10.1007/s13204-013-0269-y

M. Vanaja, K. Paulkumar, M. Baburaja, S. Rajeshkumar, G. Gnanajobitha, C. Malarkodi et al., Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg. Chem. Appl. (2014) Article Id 742346. DOI:10.1155/2014/742346

G. Rajakumar, A.A. Rahuman, Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrate leaf extract against filariasis and malaria vectors. Acta. Trop. 118 (2011) 196–3.

Perez C., Paul M., Bazerque, P. An antibiotic assay by the agar well diffusion method. Acta Biolo. et Medicine. Experiment. 15 (1990) 113–5.

M. Cheesbrough, District Laboratory Practice in Tropical Countries, Part 2, Cambridge University Press, Cambridge, UK (2000) p. 434.

A. Nabikhan, K. Kandasamy, A. Raj, N.M. Alikunhi, Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from salt marsh plants, Sesuvium portulacastrum L. Coll. Surf. B Interface. 79 (2010) 488-3.

K.P. Bankura, D. Maity, M.M.R. Mollick, D. Mondal, Bhowmick, B., M.K. Bain, Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carb. Poly. 89 (2012) 1159–1165.

J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, The bactericidal effect of silver nanoparticles. Nanotechnol. 16(10) (2005) 2346–53. DOI: 10.1088/0957-4484/16/10/059

J. Abkhoo, N. Panjehkeh, Evaluation of Antifungal Activity of Silver Nanoparticles on Fusariumoxysporum. Int. J. Infect. (Inpress) (2016) 41126.doi: 10.17795/iji-41126

S. Priyadarshini, V. Gopinath, P.N. Meera, A.D. Mubarak, P. Velusamy, Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Coll. Surf. B 102 (2013) 232-7.

Ottoni C.A., Simões M.F., Fernandes S., J. Santos, da Silva E.S Gdos, B.R.F de Souza, A.E. Maiorano, Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. Ottoni et al. AMB Expr. 3 (2017) 3-10.

M.A. Shaker, M.I. Shaaban, Synthesis of silver nanoparticles with antimicrobial and anti-adherence activities against multidrug-resistant isolates from Acinetobacter baumannii. J Taibah Uni Med Sci (2017) doi.org/10.1016/j.jtumed.2017.02.008

P. Dibrov, J. Dzioba, K.K. Gosink, , C.C. Hase, Chemiosmotic mechanism of antimicrobial activity of Ag (+) in Vibrio cholerae. Antimicro. Agents Chemothera. 46 (2002) 2668–70.

Sondi I, Sondi BS. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Coll. Inter. Sci. 275 (2004) 177–2.