Microbial Enrichment in Global Wastewater Niches Under Impact of Climate Change – A Computational Study

Jump To References Section

Authors

  • Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata. ,IN
  • Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata. ,IN
  • Post Graduate Department of Microbiology, St. Xavier’s College (Autonomous), Kolkata. ,IN
  • Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata. ,IN

Keywords:

Climate Change, Wastewater, Global warming, Methane, Nitrous oxide.

Abstract

With rise in industrialization and human activities, global warming and eventually climate change concerns are looming large on the face of humankind. Wastewater, being the sink for local microbial community can be assessed and analyzed as an indicator for climate change. Impacts of global warming are far-reaching and cause changes in life processes occurring in Nature, which gets reflected on the abundance of microorganisms detected in the wastewater. Greenhouse gases like Methane and Nitrous oxide, are the major players of global warming. The data used in our research was collected from rural, urban and delta region of India, regions of São Paulo, Brazil, along with domestic and industrial regions of Henan, China. The data were analyzed after thorough metagenomics study. Changes in nutrient cycling, such as carbon and nitrogen cycling, rise of several diseases and antibiotic resistance amongst the microorganisms have been detected. Increase in mean temperature of earth will also cause changes in the life processes of microorganisms and the ones which can survive outside the temperature niche of initial habitat can survive. Thus, by observing these six data sets, we aim to investigate the roles of microbes present in wastewater as an indicator for climate change.

Published

2022-12-01

 

References

Abatenh, E., Gizaw, B., Tsegaye, Z. and Genene, T. 2018. Microbial Function on Climate Change – A Review. Open Journal of Environmental Biology., 001-007. https://doi.org/10.17352/OJEB.000008

Al-Daghistani, H. I., Mohammad, B. T., Kurniawan, T. A., Singh, D., Rabadi, A. D., Xue, W., Avtar, R., Othman, M. H. D. and Shirazian, S. 2021. Characterization and applications of Thermomonas hydrothermalis isolated from Jordan’s hot springs for biotechnological and medical purposes. Process Biochemistry., 104, 171–181. https://doi.org/10.1016/J.PROCBIO.2021.03.010

Beaber, J., Hochhut, B., Nature, M. W. and undefined. (n.d.). 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature.Com.. Retrieved August 3, 2022, from https://idp.nature.com/authorize/casa?redirect_ uri=https://www.nature.com/articles/nature02241&casa_token=iKHiLv00hCw AAAAA:urXLr8SfSq0jAZYnnI9_Q0czs6OxfHo1FsCSJnJd-w93EUW4-qW1Pfnf_ g7J2epBFs8pcGNMUEGWMDqObA

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge, C., Langenfelds, R. L., Lathière, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C. and White, J. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature., 443(7110): 439-443. https://doi. org/10.1038/NATURE05132

Burrus, V. and Waldor, M. K.2004. Shaping bacterial genomes with integrative and conjugative elements. Research in Microbiology., 155(5): 376-386. https://doi. org/10.1016/j.resmic.2004.01.012

Bush, K. and Jacoby, G. A. 2010. Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy., 54(3), 969–976. https://doi.org/10.1128/AAC.01009-09/ASSET/7642BBDF-C04B-44A4-9311-77D570253BF5/ASSETS/GRAPHIC/ZAC9991087260003.JPEG

Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. and Zechmeister-Boltenstern, S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences., 368(1621). https://doi.org/10.1098/ RSTB.2013.0122

Cabello, F. C., Godfrey, H. P., Buschmann, A. H. and Dölz, H. J. 2016. Aquacultureas yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis., 16(7), e127–e133. https://doi. org/10.1016/S1473-3099(16)00100-6

Chapman, S., biochemistry, T. G.-S. biology and undefined. (n.d.). 1986. Importance of cryptic growth, yield factors and maintenance energy in models of microbial growth in soil. Elsevier. Retrieved August 1, 2022, from https://www. sciencedirect.com/science/article/pii/0038071786900957

Chen, S., Perathoner, S., Ampelli, C. and Centi, G. 2019. Electrochemical Dinitrogen Activation: To Find a Sustainable Way to Produce Ammonia. Studies in Surface Science and Catalysis., 178: 31-46. https://doi.org/10.1016/B978-0-444-64127-4.00002-1

Clein, J. and Biochemistry, J. S. -S. B. 1994, undefined. (n.d.). Reduction in microbial activity in Birch litter due to drying and rewetting event. Elsevier., Retrieved August 1, 2022, from https://www.sciencedirect.com/science/article/ pii/0038071794902909

Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature., 408(6809): 184-187. https://doi.org/10.1038/35041539

Crowther, T. W., Thomas, S. M., Maynard, D. S., Baldrian, P., Covey, K., Frey, S. D., van Diepen, L. T. A. and Bradford, M. A. (2015). Biotic interactions mediate soil microbial feedbacks to climate change. Proceedings of the National Academy of Sciences of the United States of America., 112(22): 7033-7038. https://doi. org/10.1073/PNAS.1502956112/SUPPL_FILE/PNAS.201502956SI.PDF

De Mandal, S., Mathipi, V., Muthukumaran, R. B., Gurusubramanian, G., Lalnunmawii, E. and Kumar, N. S. 2019. Amplicon sequencing and imputed metagenomic analysis of waste soil and sediment microbiome reveals unique bacterial communities and their functional attributes. Environmental Monitoring and Assessment, 191(12), 1-13. https://doi.org/10.1007/S10661-019-7879-0/FIGURES/7

Devi, R., Surendran, P. K. and Chakraborty, K. (2009). Antibiotic resistance and plasmid profiling of Vibrio parahaemolyticus isolated from shrimp farms along the Southwest coast of India. World Journal of Microbiology and Biotechnology., 25(11): 2005-2012. https://doi.org/10.1007/S11274-009-0101-8

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R. and Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science., 289(5487): 2068-2074. https://doi.org/10.1126/SCIENCE.289.5487.2068

Ginige, M. P., Keller, J. and Blackall, L. L. 2005. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Applied and Environmental Microbiology., 71(12): 8683-8691. https://doi. org/10.1128/AEM.71.12.8683-8691.2005/ASSET/B45534A9-CF2B-42A7-A107-AEFE1C0451BC/ASSETS/GRAPHIC/ZAM0120561020003.JPEG

Gtari, M., Ghodhbane-Gtari, F., Nouioui, I., Beauchemin, N. and Tisa, L. S. 2012. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Archives of Microbiology., 194(1): 3-11. https://doi.org/10.1007/S00203-011-0733-6

Gupta, C., Prakash, D. and Gupta., S. 2014. Role of microbes in combating global warming Int. J. Pharm. Sci., 4: 359-363.

Hedlund, B. P. and Staley, J. T. 2006. Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environmental Microbiology, 8(1): 178-182. https://doi. org/10.1111/J.1462-2920.2005.00871.X

Hochhut, B., Lotfi, Y., Mazel, D., Faruque, S. M., Woodgate, R. and Waldor, M. K. 2001. Molecular Analysis of Antibiotic Resistance Gene Clusters in Vibrio cholerae O139 and O1 SXT Constins. Antimicrobial Agents and Chemotherapy, 45(11), 2991-3000. https://doi.org/10.1128/AAC.45.11.2991-3000.2001

Hug, L. A., Maphosa, F., Leys, D., Löffler, F. E., Smidt, H., Edwards, E. A., and Adrian, L. 2013. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philosophical Transactions of the Royal Society B: Biological Sciences., 368(1616). https://doi.org/10.1098/ RSTB.2012.0322

Huong, N. L., Itoh, K. and Suyama, K. 2007. Diversity of 2,4-Dichlorophenoxyacetic Acid (2,4-D) and 2,4,5-Trichlorophenoxyacetic Acid (2,4,5-T)-Degrading Bacteria in Vietnamese Soils. Microbes and Environments., 22(3): 243-256. https://doi. org/10.1264/JSME2.22.243

IPCC. 2022. Global Warming of 1.5°C. Global Warming of 1.5°C. https://doi. org/10.1017/9781009157940

Jackson, R. E. 2004. Recognizing Emerging Environmental Problems: The Case of Chlorinated Solvents in Groundwater. Technology and Culture., 45(1): 55-79. https://doi.org/10.1353/TECH.2004.0022

Joutey, N. T., Bahafid, W., Sayel, H. and El Ghachtouli, N. 2013. Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. Biodegradation - Life of Science. https://doi.org/10.5772/56194

Khan, S. T. and Hiraishi, A. 2002. Diaphorobacter nitroreducens gen nov, sp nov, a poly (3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. The Journal of General and Applied Microbiology, 48(6): 299-308. https://doi.org/10.2323/JGAM.48.299

Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. and Frith, M. C. 2011. Adaptive seeds tame genomic sequence comparison. Genome Research, 21(3): 487-493. https:// doi.org/10.1101/gr.113985.110

Knauth, L. P. 2005. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. In Geobiology: Objectives, Concepts, Perspectives (pp. 53-69). Elsevier. https://doi.org/10.1016/B978-0-444-52019-7.50007-3

Kollah, B., Patra, A. K. and Mohanty, S. R. 2018. Microbial Cycling of Greenhouse Gases and Their Impact on Climate Change. 129-143. https://doi.org/10.1007/978-981-10-6178-3_7

Konhauser, K. O., Jones, B., Reysenbach, A. L. and Renaut, R. W. 2003. Hot spring sinters: keys to understanding Earth’s earliest life forms. Canadian Journal of Earth Sciences, 40(11): 1713-1724. https://doi.org/10.1139/E03-059

Kouzuma, A. and Watanabe, K. 2011. Molecular Approaches for the Analysis of Natural Attenuation and Bioremediation. Comprehensive Biotechnology, Second Edition, 6: 25-36. https://doi.org/10.1016/B978-0-08-088504-9.00375-5

Krone, U. E. and Thauer, R. K. 1992. Dehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcinabarkeri. FEMS Microbiology Letters, 69(2): 201-204. https://doi.org/10.1016/0378-1097(92)90629-3

Lara-Martín, P. A., Chiaia-Hernández, A. C., Biel-Maeso, M., Baena-Nogueras, R. M. and Hollender, J. 2020. Tracing Urban Wastewater Contaminants into the Atlantic Ocean by Nontarget Screening. Environmental Science and Technology, 54(7): 3996-4005. https://doi.org/10.1021/acs.est.9b06114

Larkin, A. A. and Martiny, A. C. 2017. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environmental Microbiology Reports, 9(2), 55-70. https://doi.org/10.1111/1758-2229.12523

Lesage, S., Brown, S. and Hosler, K. R. 1992. Degradation of chlorofluorocarbon-113 under anaerobic conditions. Chemosphere, 24(9): 1225-1243. https://doi.org/ 10.1016/0045-6535(92)90049-W

Li, C., Wang, S., Du, X., Cheng, X., Fu, M., Hou, N. and Li, D. 2016. Immobilization of iron- and manganese-oxidizing bacteria with a biofilm-forming bacterium for the effective removal of iron and manganese from groundwater. Bioresource Technology, 220: 76-84. https://doi.org/10.1016/J.BIORTECH.2016.08.020

Losey, N. A., Stevenson, B. S., Busse, H. J., Damsté, J. S. S., Rijpstra, W. I. C., Rudd, S. and Lawson, P. A. 2013. Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 11): 4149-4157. https://doi.org/10.1099/IJS.0.051425-0

Luo, Y. and Zhou, X. 2006. Soil Respiration and the Environment. Soil Respiration and the Environment. https://doi.org/10.1016/B978-0-12-088782-8.X5000-1

Ma, W., Huang, C., Zhou, Y., Li, J. and Cui, Q. 2017. MicroPattern: a web-based tool for microbe set enrichment analysis and disease similarity calculation based on a list of microbes. Sci. Rep., 7: 1, 7(1), 1-6. https://doi.org/10.1038/srep40200

MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M. and Brownstein, J. S. 2018. Antibiotic resistance increases with local temperature. Nat. Clim., 8: 6, 8(6): 510-514. https://doi.org/10.1038/s41558-018-0161-6

Mao, Y., Zhang, X., Xia, X., Zhong, H. and Zhao, L. 2010. Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor. Journal of Industrial Microbiology and Biotechnology, 37(9): 927-934. https://doi.org/10.1007/S10295-010-0740-7

Markowitz, V. M., Chen, I.-M. A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., Huntemann, M., Anderson, I., Mavromatis, K., Ivanova, N. N. and Kyrpides, N. C. 2012. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Research, 40(D1): D115-D122. https://doi.org/10.1093/nar/gkr1044

Merico, D., Isserlin, R., Stueker, O., Emili, A. and Bader, G. D. 2010. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. PLOS ONE, 5(11): e13984. https://doi.org/10.1371/JOURNAL. PONE.0013984

Mizuno, T. and Mizushima, S. 1990. Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. Molecular Microbiology, 4(7): 1077-1082. https://doi.org/10.1111/j.1365-2958.1990.tb00681.x

Mori, K. and Hanada, S. 2015. Thermodesulfobium. Bergey’s Manual of Systematics of Archaea and Bacteria, 1-5. https://doi.org/10.1002/9781118960608.GBM00753

Muyzer, G. and Stams, A. J. M. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology., 6: 6, 6(6): 441-454. https:// doi.org/10.1038/nrmicro1892

Nagpal, S., Haque, M. M. and Mande, S. S. 2016. Vikodak - A Modular Framework for Inferring Functional Potential of Microbial Communities from 16S Metagenomic Datasets. PLOS ONE, 11(2): e0148347. https://doi.org/10.1371/ journal.pone.0148347

Nancharaiah, Y. v., Dodge, C., Venugopalan, V. P., Narasimhan, S. v. and Francis, A. J. 2010. Immobilization of Cr(VI) and Its Reduction to Cr(III) Phosphate by Granular Biofilms Comprising a Mixture of Microbes. Applied and Environmental Microbiology, 76(8): 2433. https://doi.org/10.1128/AEM.02792-09

Nogi, Y., Yoshizumi, M., Hamana, K., Miyazaki, M. and Horikoshi, K. 2014. Povalibacteruvarum gen. nov., sp. nov., a polyvinyl-alcohol-degrading bacterium isolated from grapes. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 8): 2712-2717. https://doi.org/10.1099/IJS.0.062620-0

Ojha, N., Karn, R., Abbas, S. and Bhugra, S. 2021. Bioremediation of Industrial Wastewater: A Review. IOP Conference Series: Earth and Environmental Science, 796(1): 012012. https://doi.org/10.1088/1755-1315/796/1/012012

Osorio-Olvera, L., Soberón, J. and Falconi, M. 2019. On population abundance and niche structure. Ecography, 42(8): 1415-1425. https://doi.org/10.1111/ ECOG.04442

Pal, D., Bhardwaj, A., Sudan, S. K., Kaur, N., Kumari, M., Bisht, B., Vyas, B., Krishnamurthi, S. and Mayilraj, S. 2018. Thauerapropionica sp. nov., isolated from downstream sediment sample of the river ganges, Kanpur, India. International Journal of Systematic and Evolutionary Microbiology, 68(1): 341-346. https://doi.org/10.1099/IJSEM.0.002508/CITE/REFWORKS

Puengrang, P., Suraraksa, B., Prommeenate, P., Boonapatcharoen, N., Cheevadhanarak, S., Tanticharoen, M. and Kusonmano, K. 2020. Diverse Microbial Community Profiles of Propionate-Degrading Cultures Derived from Different Sludge Sources of Anaerobic Wastewater Treatment Plants. Microorganisms, 8(2). https://doi.org/10.3390/MICROORGANISMS8020277

Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters, 3(4): 349-361. https://doi.org/10.1046/j.1461-0248.2000.00143.x

Qiu, Y. L., Kuang, X. Z., Shi, X. S., Yuan, X. Z., and Guo, R. B. 2014. Paludibacterjiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field. Archives of Microbiology, 196(3): 149-155. https://doi.org/10.1007/S00203-013-0951-1/FIGURES/3

Reddy, T. B. K., Thomas, A. D., Stamatis, D., Bertsch, J., Isbandi, M., Jansson, J., Mallajosyula, J., Pagani, I., Lobos, E. A. and Kyrpides, N. C. 2015. The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Research, 43(D1): D1099-D1106. https://doi.org/10.1093/NAR/GKU950

Schimel, J., Balser, T. C. and Wallenstein, M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88(6): 1386-1394. https://doi.org/10.1890/06-0219

Scholten, E., Lukow, T., Auling, G., Kroppenstedt, R. M., Rainey, F. A. and Diekmann, H. 1999. Thauera mechernichensissp. nov., an aerobic denitrifier from a leachate treatment plant. International Journal of Systematic Bacteriology, 49 Pt 3(3): 1045-1051. https://doi.org/10.1099/00207713-49-3-1045

Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. and Harada, H. 2000. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. International Journal of Systematic and Evolutionary Microbiology, 50 Pt 2(2): 771-779. https://doi.org/10.1099/00207713-50-2-771

Sharma, S., Szele, Z., Schilling, R., Munch, J. C. and Schloter, M. 2006. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Applied and Environmental Microbiology, 72(3): 2148-2154. https://doi.org/10.1128/AEM.72.3.2148-2154.2006

Slobodkina, G. B., Kovaleva, O. L., Miroshnichenko, M. L., Slobodkin, A. I., Kolganova, T. v., Novikov, A. A., van Heerden, E. and Bonch-Osmolovskaya, E. A. 2015. Thermoguttaterrifontis gen. nov., sp. nov. and Thermogutta hypogea sp. nov., thermophilic anaerobic representatives of the phylum Planctomycetes. International Journal of Systematic and Evolutionary Microbiology, 65(Pt 3): 760-765. https://doi.org/10.1099/IJS.0.000009

Sohn, J. H., Kwon, K. K., Kang, J. H., Jung, H. B. and Kim, S. J. 2004. Novosphingobium pentaromativoranssp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. International Journal of Systematic and Evolutionary Microbiology, 54(5): 1483-1487. https://doi.org/10.1099/IJS.0.02945-0/CITE/REFWORKS

Suzina, N. E., Mulyukin, A. L., Kozlova, A. N., Shorokhova, A. P., Dmitriev, V. v., Barinova, E. S., Mokhova, O. N., El’-Registan, G. I. and Duda, V. I. 2004. Ultrastructure of Resting Cells of Some Non-Spore-Forming Bacteria. Microbiology, 73(4): 435-447. https://doi.org/10.1023/B:MICI.0000036990.94039. af

Tamang, M. D., Sunwoo, H. and Jeon, B. 2017. Phage-mediated dissemination of virulence factors in pathogenic bacteria facilitated by antibiotic growth promoters in animals: A perspective. Animal Health Research Reviews, 18(2): 160-166. https://doi.org/10.1017/S1466252317000147

Tenover, F. C. 2006. Mechanisms of Antimicrobial Resistance in Bacteria. The American Journal of Medicine, 119(6): S3-S10. https://doi.org/10.1016/j. amjmed.2006.03.011

Turki, Y., Mehri, I., Lajnef, R., Rejab, A.B., Khessairi, A., Cherif, H., Ouzari, H.I., and Hassen, A. 2017. Biofilms in bioremediation and wastewater treatment: characterization of bacterial community structure and diversity during seasons in municipal wastewater treatment process. Environmental Science and Pollution Research, 24: 3519-3530.

Vitousek, P. M., Menge, D. N. L., Reed, S. C. and Cleveland, C. C. 2013. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621). https://doi.org/10.1098/RSTB.2013.0119

Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., Conrad, N., Dietrich, E. M., Disz, T., Gabbard, J. L., Gerdes, S., Henry, C. S., Kenyon, R. W., Machi, D., Mao, C., Nordberg, E. K., Olsen, G. J., Murphy-Olson, D. E., Olson, R., Stevens, R. L. 2017. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Research, 45(D1), D535-D542. https://doi.org/10.1093/nar/gkw1017

Willems, A. and Gillis, M. 2015. Acidovorax. Bergey’s Manual of Systematics of Archaea and Bacteria, 1-16. https://doi.org/10.1002/9781118960608.GBM00943

Yang, G. Q., Zhang, J., Kwon, S. W., Zhou, S. G., Han, L. C., Chen, M., Ma, C. and Li, Z. 2013. Thauerahumireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 3): 873-878. https://doi.org/10.1099/IJS.0.040956-0

Zhang, L., Qiu, X., Huang, L., Xu, J., Wang, W., Li, Z., Xu, P. and Tang, H. 2021. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater. Journal of Hazardous Materials, 419: 126524. https://doi.org/10.1016/J.JHAZMAT.2021.126524

Zhao, Z., Lin, Q., Zhou, Y., Feng, Y., Huang, Q. and Wang, X. 2021. Pollutant removal from municipal sewage by a microaerobic up-flow oxidation ditch coupled with micro-electrolysis. Royal Society Open Science, 8.