Comparative Profiling of Rice Endospheric Bacterial Assemblages to Identify Climate Independent Core

Jump To References Section

Authors

  • Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata. ,IN
  • Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata. ,IN
  • Post Graduate Department of Microbiology, St. Xavier’s College (Autonomous), Kolkata. ,IN
  • Post Graduate Department of Botany, Lady Brabourne College, Kolkata, India. ,IN
  • Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), Kolkata. ,IN

Keywords:

Rice Endosphere, Metagenomics, Climate Change, Greenhouse Gases.

Abstract

Microbial communities present in plant roots have a significant impact on plant nourishment and output. Although it has been hypothesized that increased atmospheric CO2 and heat will alter above- and below-ground plant activities, it is still undetermined how root-associated microbial population will react to these changes, particularly in agroecosystems. Recently, several technologies related to the variety and microbiome of plants have been used, including sequencing, metagenomics, and bioinformatics. Minimal research has been conducted on the variables that affect how plant microorganisms are composed. Microbial communities are effective biogeochemical cycle regulators, which makes them a superior strategy for reducing the effects of shifting climatic patterns and enables optimum usage of greenhouse gases for metabolic processes. Okibacterium, Catellicoccus, Acinetobacter and Massilia are found to be of highest dominance in the root endosphere which help in development of the plants. Recently, studies are conducted on the root microbiome to check their responses to the gradual changing climate. This in turn can provide us with the knowledge on microbial supplementation which can be used for various challenging conditions that hinder the growth of plants

Published

2022-12-01

 

References

Chen, K., Horton, R. M., Bader, D. A., Lesk, C., Jiang, L., Jones, B., Zhou, L., Chen, X., Bi, J. and Kinney, P. L. 2017. Impact of climate change on heat-related mortality in Jiangsu Provnce, China. Environ. Pollut., 224: 317-325. DOI: 10.1016/j.envpol.2017.02.011

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M. and Bradford, M. A. 2016. Quantifying global soil carbon losses in response to warming. Nature, 540: 104-108.

Davies, J. S., Currie, M. J., Wright, J. D., Newton-Vesty, M. C., North, R. A., Mace, P. D., Allison, J. R. and Dobson, R. C. J. 2021. Selective nutrient transport in bacteria: multicomponent transporter systems reign supreme. Front. Mol. Biosci., 8: 699222. https: //doi.org/10.3389/fmolb.2021.699222

Fitzpatrick, C. R., Salas-González, I., Conway, J. M., Finkel, O. M., Gilbert, S., Russ, D., José, P., Teixeira, P. J. and Dangl, J. L. 2020. The plant microbiome: from ecology to reductionism and beyond. Annu. Rev. Microbiol., 74: 81-100.

Gao, K., Mao, Z., Meng, E., Li, J., Liu, X., Zhang, K., Zhang, L., Wang, G. and Liu, Y. 2022. Long-term elevated atmospheric CO2 and warming affect the root-associated microbiomes of rice and wheat. Preprint from Research Square. https://doi.org/10.21203/rs.3.rs-1582328/v1

Glick, B. R., Penrose, D. M. and Li, J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol., 190(1): 63-68.

Gontia-Mishra, I., Sapre, S., Sharma, A. and Tiwari, S. 2016. Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol., 18(6): 992-1000.

Haldar, S. and Sengupta, S. 2015. Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol. J., 9: 1-7. https://doi. org/10.2174/1874285801509010001

http://jvenn.toulouse.inra.fr/

https://niwa.co.nz/education-and-training/schools/teaching-resources/rangi-weather-and-climate-lessons-for-teachers/lesson-6-climate-drivers

https://www.bioinformatics.uni-muenster.de/tools/metag/generate/

https://www.ebi.ac.uk/ena/browser/home

https://www.epa.gov/climatechange-science/causes-climate-change

https://www.nature.com/scitable/knowledge/library/introduction-to-the-basic-drivers-of-climate-13368032/

Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W. and Sessitsch, A. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol., 70(5): 2667-2677.

Kandeler, E., Mosier, A. R., Morgan, J. A., Milchunas, D. G., King, J. Y., Rudolph, S. and Tscherko, D. 200’6. Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol. Biochem., 38(8): 2448-2460.

Kang, L., Han, X., Zhang, Z. and Sun, O. J. 2007. Grassland ecosystems in China: review of current knowledge and research advancement. Philos. Trans. R. Soc. Lond., B: Biol. Sci., 362: 997-1008.

Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J-A., Wookey, P. A., Ågren, G. I., Sebastià , M-T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N. and Hartley, I. P. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513: 81-84. https://doi.org/10.1038/nature13604

Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Chen, Y., Guo, J., Chen, L., Zhao, X., Dong, Z. and Liu, Y-G. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8(8): 1274-1284. https://doi.org/10.1016/j.molp.2015.04.007

Ofek M., Hadar, Y. and Minz, D. 2012, Ecology of root colonizing Massilia (Oxalobacteraceae). PLOS ONE 7(7): e40117. https://doi.org/10.1371/journal. pone.0040117

Ren, G., Zhu, C., Alam, M. S., Tokida, T., Sakai, H., Nakamura, H., Usui, Y., Zhu, J., Hasegawa, T. and Jia, Z. 2015. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant and Soil., 392: 27-44. https://doi.org/10.1007/s11104-015-2503-8

Sun, X., Song, B., Xu, R., Zhang, M., Gao, P., Lin, H. and Sun, W. 2021. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensisand their response to the heavy metal contamination. J. Environ. Sci., 104: 387-398.

Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. and Singh, B. K. 2020. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol., 18(11): 607-621. https://doi.org/10.1038/s41579-020-0412-1

Wang, M., Eyre, A. W., Thon, M. R., Oh, Y. and Dean, R. A.2020. Dynamic changes in the microbiome of rice during shoot and root growth derived from seeds. Front. Microbiol., 11: 559728. DOI: 10.3389/fmicob.2020.559728

Xiong, W., Song, Y., Yang, K., Gu, Y., Wei, Z., Kowalchuk, G. A., Xu, Y., Jousset, A., Shen, Q. and Geisen, S. 2020. Rhizosphere protists are key determinants of plant health. Microbiome, 8(1): 27. DOI: 10.1186/s40168-020-00799-9

Xu, X., Sharma, P., Shu, S., Lin, T-S., Ciais, P., Tubiello, F. N., Smith, P., Campbell, N. and Jain, A. K. 2021. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2: 724-732.

Ye, H., Arron, J. R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N. K., Segal, D., Dzivenu, O. K., Vologodskaia, M., Yim, M., Du, K., Singh, S., Pike, J. W., Darnay, B. G., Choi, Y. and Wu, H. 2002. Distinct molecular mechanism for initiating TRAF6 signalling. Nature, 418(6896): 443-447. https://doi.org/10.1038/ nature00888