Bioaccumulation and Translocation of Selective Pesticides in Malabar Spinach, Basella alba: An Approach to Address Food Security
Keywords:
West Bengal, Basella alba, Pesticides, SDG - 2 and 3, Translocation FactorAbstract
In West Bengal, using pesticides to boost up crop production and manage pests in the agricultural field is a standard practice. Various classes of pesticides have been approved for this purpose, but most of the farmers are still using out-dated pesticides that have significant residual effects on crops and vegetables. Use of pesticide in mass scale results in the deterioration of the quality of crops and vegetables as well as causes edaphic stresses. Consumption of pesticides through food causes adverse impacts on the metabolic and physiological functions of human beings. This paper highlights the bioaccumulation and Translocation Factors (TFs) of few common pesticides in the root, stem, and leaf of Basella alba commonly known as Malabar spinach, collected from the control site (rooftop garden at Belgachia, North Kolkata) and stressed site (Gobindapur village in the North 24 Parganas district of West Bengal) during November, 2023. The analysis showed accumulation of pesticide residue, viz., Butachlor, Malathion, Parathion methyl, 4,4´-Dichlorodiphenyltrichloroethane (DDT), Aldrin, Dieldrin and α– endosulfan in the root, stem, and leaf of the species. The sequence displayed following orders root > stem > leaf. Results of this study show the absorption and transport behavior of the selected pesticides in Basella alba and point out to the need for the safety risk assessment of vegetable consumption.
Downloads
Published
Issue
Section
License
All the articles published in JES are distributed under a creative commons license. The journal allows the author(s) to hold the copyright of their work (all usages allowed except for commercial purpose).
Please contact us at editorgjeis@gmail.com for permissions related to commercial use of the article(s).
References
Abou-Arab, A. A. K. 1999. Behavior of pesticides in tomatoes during commercial and home preparation. Food Chem., 65(4): 509-514.
Albrecht, W. N. 1987. Central nervous system toxicity of some common environmental residues in the mouse. J. Toxicol. Environ. Health, 21(4): 405-421.
Anonymous 1982. An Assessment of the Health Risks of Seven Pesticides Used for Termite Control. National Academic Press (US), D.C., pp. 1-76.
Błasiak, J., Jałoszynski, P., Trzeciak, A. and Szyfter, K. 1999. In vitro studies on the genotoxicity of the organophosphorus insecticide malathion and its two analogues. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 445(2): 275-283.
Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D. et al. 2012. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr., 51(6): 637-663.
Collins, C., Fryer, M., and Grosso, A. 2006. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol., 40(1): 45-52.
Daniel, V., Huber, W., Bauer, K., Suesal, C., Conradt C. et al. 2002. Associations of dichlorodiphenyltrichloroethane (DDT) 4.4 and dichlorodiphenyldichloroethylene (DDE) 4.4 blood levels with plasma IL-4. Arch. Environ. Health, 57(6): 541-547.
Deepa, N., Madhivadhani, K., Sanjai Prakash, B., Vignesh, R. and Bharath, S. 2021. Effect of antioxidant activity of basella on convulsions mediated enzymes. Int. J. Nov. Trend. Pharmac. Sci., 11(1): 5-9.
Farahat, T. M., Abdelrasoul, G. M., Amr, M. M., Shebl, M. M., Farahat, F. M. et al. 2003. Neurobehavioural effects among workers occupationally exposed to organophosphorous pesticides. Occup. Environ. Med., 60(4): 279-286.
Haque, N., Rizvi, S. J. and Khan, M. B. 1987. Malathion induced alterations in the lipid profile and the rate of lipid peroxidation in rat brain and spinal cord. Pharmacol. Toxicol., 61(1): 12-15.
Honeycutt, M. and Shirley, S. 2014. Dieldrin. In: Encyclopedia of Toxicology (Third edition), pp. 107-110.
Ikuesan, M. O., Oyetayo, V. O. and Ayelari, O. P. 2023. Assessment of the potentials of water hyacinth (Eichhornia crassipes) as raw material for biofertilizer. 23(6): 97-108.
James, A. and Emmanuel, D. 2021. An overview of endosulfan and the aftermath of its biohazardous administration in Southern India. Eur. J. Mol. Clin. Med., 8(2): 212-218.
Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A. and Anantharam, V. 2005. Dieldrin-induced neurotoxicity: relevance to Parkinson’s disease pathogenesis. Neurotoxicol., 26(4): 701-719.
Khare, C. P. 2004. Encyclopedia of Indian Medicinal Plants: An Illustrated Dictionary. Springer-Verlag Berlin/Heidelberg, 900 pp.
Kumar, V., Bhat, Z. A., Kumar, D., Bohra, P. and Sheela, S. 2011. In vitro antiinflammatory activity of leaf extracts of Basella alba Linn. var. alba. Int. J. Drug. Dev. Res., 3(2): 176-179.
Melangadi, F. 2017. Environmental crime and victimization: a green criminological analysis of the endosulfan disaster, Kasargod, Kerala. Int. Ann. Criminol., 55(2): 189-204.
Morgan, D. P., Lin, L. I. and Saikaly, H. H. 1980. Morbidity and mortality in workers occupationally exposed to pesticides. Arch. Environ. Contam. Toxicol., 9(3): 349-382.
Moutusi, S., Parivallal, B. P., Prasannakumar, M. K. and Kiranmayee, P. 2019. Morphological and molecular characterization of culturable leaf endophytic fungi from Malabar Spinach: the first report. Stud. Fungi, 4(1): 192-204.
Oyewole, O. A. and Kalejaiye, O. A. 2012. The antimicrobial activities of ethanolic extracts of Basella alba on selected microorganisms. Sci. J. Microbiol., 1(5): 113-118.
Paterson, S., MacKay, D., Tam, D. and Shiu, W. Y. 1990. Uptake of organic chemicals by plants: a review of processes, correlations and model. Chemosphere, 21(3): 297-331.
Porta, M., Malats, N., Guarner, L., Carrato, A., Rifa, J. et al. 1999. Association between coffee drinking and K-ras mutations in exocrine pancreatic cancer. PANKRAS II Study Group. J. Epidemiol. Community Health, 53(11): 702-709.
Sankar, N. R., Sreeramulu, A., Gopal, D. S. and Bagyanarayana, G. 2011 First report of leaf blight of Basella alba caused by Alternaria alternata in India.
Plant Dis., 95(11): 1476 Savage, E. P., Keefe, T. J., Mounce, L. M., Heaton, R. K., Lewis, J. A. 1988. Chronic neurological sequelae of acute organophosphate pesticide poisoning. Arch. Environ. Health, 43(1): 38-45.
Shade, A., Jacques, M. A. and Barret, M. 2017. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr. Opin. Microbiol., 37: 15-22.
Sharma, A., Kaninathan, A., Dahal, S., Kumari, S., Choudhary, B. and Raghavan, S. C. 2022. Exposure to endosulfan can cause long term effects on general biology, including the reproductive system of mice. Front. Genet.: 1047746. https://doi.org/10.3389/fgene.2022.1047746.
Sonkar, D. S., Gupta, R. and Saraf, S. A. 2012. Effect of Basella rubra L. leaf extract on haematological parameters and amylase activity. Pharmacog. Comm., 2(3): 10-13.
Srivastava, R. K., Narayan, S. and Srivastava, A. K.1994. New species of Cercospora from North-eastern Uttar Pradesh. Indian Phytopath., 47: 226-231.
Sweeney, M. I. and Lyon, M. E., 1999. Selective effect of malathion on blood coagulation versus locomotor activity. J. Environ. Pathol. Toxicol. Oncol., 18(3): 203-211.
Wilson, A. G. E. and Takei, A. S. 2000. Summary of toxicology studies with butachlor. J. Pesticide Sci., 25(1): 75-83.
Yang, R-Y., Lin, S. and Kuo, G. 2008. Content and distribution of flavonoids among 91 edible plant species. Asia Pac. J. Clin. Nutr., 17(Suppl. 1): 275-279.
Zhu, S., Liu, Y., Li, Y., Yi, J., Yang, B. et al. 2022. The potential risks of herbicide butachlor to immunotoxicity via induction of autophagy and apoptosis in the spleen. Chemosphere, 286(1): 131683. https://doi.org/10.1016/j.chemosphere.2021.131683