Sustainable Agriculture for Zero Hunger: Combating Abiotic Stress
Keywords:
Environmental stress, Sustainability, Crop stress physiology, Phytonanotechnology, Stress priming, Stress resilient crops.Abstract
To meet the rising food and feed crisis, rigorous control of productivity and yield losses in agriculture due to environmental stress must be executed. Coupled with climate change, abiotic stress is causing havoc to crop physiology, productivity and quality of agricultural produce. With the SDG 2 target of Zero Hunger to a population of 8.5 billion by 2030, such massive loss of agricultural yield and economy poses a huge challenge. Stress mediated responses of plants are multiple and varied. Detailed research on the varied stress responses of plants and the biotechnological interventions to combat abiotic stress could usher in a new era of sustainable agriculture. A major objective in plant breeding is the development of stress resilient crops and economically important plants with the potential to combat and adapt to abiotic stress. Plant extracts, essential oils, agricultural product waste materials, plant growth promoting bacteria, arbuscular mycorrhizal fungus may be suggested for a paradigm shift towards sustainable agriculture.
Downloads
Published
Issue
Section
License
All the articles published in JES are distributed under a creative commons license. The journal allows the author(s) to hold the copyright of their work (all usages allowed except for commercial purpose).
Please contact us at editorgjeis@gmail.com for permissions related to commercial use of the article(s).
References
Cinisli, K. T., Uçar, S. and Dikbaş, N. 2019. Use of nanomaterials in agriculture. J. Agric. Sci., 29: 817-831. DOI: 10.29133/yyutbd.595658
Dubey, A. and Mailapalli, D. R. 2016. Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: E. Lichtfouse (ed.), Sustainable Agriculture Reviews, 19: 307-330.
Ghafar, M. A., Akram, N. A., Saleem, M. H., Wang, J., Wijaya, L. et al., 2021. Ecotypic morphological and physio-biochemical responses of two differentially adapted forage grasses, Cenchrus ciliaris L. and Cyperus arenarius Retz. to drought stress. Sustainability, 13: 8069. DOI: 10.3390/su13148069.
Gill, S. S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48: 909-930. DOI: 10.1016/j.plaphy.2010.08.016
Hasanuzzaman, M., Nahar, K., Rahman, A., Inafuku, M., Oku, H. et al. 2018. Exogenous nitric oxide donor and arginine provide protection against shortterm drought stress in wheat seedlings. Physiol. Mol. Biol. Plants, 24: 993-1004.
Hussain, S., Khalid, M. F., Saqib, M., Ahmad, S., Zafar, W. et al. 2018. Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiol. Plant., 40: 135. DOI: 10.1007/s11738-018-2710-z
Jiang, M., Song, Y., Kanwar, M. K., Ahammed, G. J., Shao, S. et al. 2021. Phytonanotechnology applications in modern agriculture. J. Nanobiotechnol., 19: 430. https://doi.org/10.1186/s12951-021-01176-w
Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M. et al. 2020. The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl. Sci., 10: 5692. DOI: 10.3390/app10165692
Khairy, A. M., Tohamy, M. R. A., Zayed, M. A., Mahmoud, S. F., El-Tahan, A. M. et al. 2022. Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J. Biol. Sci., 29: 2199-2209. DOI: 10.1016/j.sjbs.2021.11.041
Liu, H, Able, A. J. and Able, J. A. 2022. Priming crops for the future: rewiring stress memory. Trends Plant Sci., 27(7): 699-716. DOI: 10.1016/j.tplants.2021.11.015.
Matiu, M, Ankerst, D. P. and Menzel, A. 2017. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS One, 12(5): e0178339. DOI: 10.1371/journal.pone.0178339
Matres, J. M., Hilscher, J., Datta, A., Armario-Nájera, V., Baysal, C. et al. 2021. Genome editing in cereal crops: an overview. Transgenic. Res., 30: 461-498.
Mukherjee, R. and Sen, S. 2021a. Agricultural sustainability through nitrogen fixation: approaches and techniques. Harvest, 6(1): 48-55.
Mukherjee, R and Sen, S. 2021b. Role of biological nitrogen fixation (BNF) in sustainable agriculture: a review Int. J. Adv. Life Sci. Res., 4(3): 1-7. https://doi.org/10.31632/ijalsr.2021.v04i03.001
Mushtaq, M., Ahmad Dar, A., Skalicky, M., Tyagi, A., Bhagat, N. et al. 2021. CRISPRbased genome editing tools: insights into technological breakthroughs and future challenges. Genes, 12(6): 797. DOI: 10.3390/genes12060797
Nair, A. U., Naik Bhukya, D. P., Sunkar, R., Chavali, S. and Allu, A. D. 2022. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. J. Exp. Bot., 73(11): 3355-3371. https://doi.org/10.1093/jxb/erac089
Nair, R. 2016. Effects of nanoparticles on plant growth and development. In: C. Kole, D. Kumar and M. Khodakovskaya (eds.), Plant Nanotechnology. Springer, Cham, pp. 95-118.
Nikoleta-Kleio, D., Theodoros, D. and Roussos, P. A., 2020. Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Sci. Hortic. (Amsterdam), 259: 108812 DOI: 10.1016/j.scienta.2019.108812
Noctor, G. and Foyer, C. H. 2016. Intracellular redox compartmentation and ROSrelated communication in regulation and signaling. Plant Physiol., 171(3): 15811592. DOI: 10.1104/pp.16.00346
Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M. et al. 2017. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem., 115: 126-140. DOI: 10.1016/j.plaphy.2017.03.018
Raja, V., Majeed, U., Kang, H., Andrabi, K. I. and John, R. 2017. Abiotic stress: interplay between ROS, hormones and MAPKs. Environ. Exp. Bot., 137: 142157.
Santana, I., Wu, H., Hu, P. and Giraldo, J. P. 2020. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun., 11: 2045. DOI: 10.1038/s41467-020-15731-w
Sen, S. and Mukherji, S. 1998a. Seasonal effects on nitrogenous compounds in two crop plants. Environ. & Ecol., 16(4): 871-874.
Sen, S. and Mukherji, S. 1998b. Seasonal variation in biochemical constituents of Abelmoschus esculentus (L.) Moench and Lycopersicon esculentum Mill. J. Interacademicia, 2(3): 118-123.
Sen, S. and Mukherji, S. 1999a. Biochemical evaluation of the Okra Abelmoschus esculentus (L.) Moench fruit under seasonal environmental changes. Ecol. Environ. Conserv., 5(4): 381-384.
Sen, S. and Mukherji, S. 1999b. Changes in photosynthetic parameters in Abelmoschus esculentus (L.) Moench as affected by seasonal environmental conditions. Asian J. Microbiol. Biotechnol. Environ. Sci., 1(3-4): 157-161.
Sen, S. and Mukherji, S. 2000. Season-induced alterations in levels of antioxidants and polygalacturonase activity in tomato (Lycopersicon esculentum Mill.) fruit. J. Environ. Pollut., 7(4): 303-308.
Sen, S. and Mukherji, S. 2006. Respiration and activity of respiratory enzymes in Okra (Abelmoschus esculentus) under seasonal environmental conditions of West Bengal, India. J. Environ. Biol., 27(2): 287-292.
Sen, S. and Mukherji, S. 2007. Changes in phosphorus metabolism in Lycopersicon esculentum Mill. as affected by seasonal environmental conditions of West Bengal (India). Eco-Chronicle, 2(2): 81-86.
Sen, S. 2016. Eco-Physiology of Two Indian Crop Plants: Impact of Seasonal Stress. Lambert Academic Publishing. ISBN: 978-3-659-91778-3.
Sen, S. 2020. Antioxidative defense in plants in response to seasonal environmental stress. Asian J. Sci. Technol., 11(3): 10849-10862.
Sen, S. 2023. Impact of seasonal stress on reactive oxygen species and scavenging enzymes of two crop plants growing under tropical Indian conditions. J. Stress Physiol. Biochem., 19(4): 43-55.
Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Beagley, J. et al. 2021. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet, 397: 129-170. DOI: 10.1016/S0140-6736(20)32290-X
Wu, H. and Li, Z. 2022. Recent advances in nano-enabled agriculture for improving plant performance. Crop J., 10(1): 1-12. DOI: 10.1016/j.cj.2021.06.002