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§1. The identities. It is well known [8], that if thetwo elliptic curves
»® =f{x) and y® = g(x), defined over the integers Z are isogenous, then
for all primes p # 2, 3 and not dividing the discriminant of either, the

and Y ,
character sums . %‘d ’) (fx)/p) an s (2(9)/p) are equal, where
(+/p) is the Legendre symbol.

In this paper, we use a theorem of Velu [10] to construct isogenies of
degrees 2 and 3 from suitable elliptic curves and then apply the above
remark to obtain some identities involving character sums, We then use

these identities to evaluate certain character sums involving elllptlc curves.
We first give a statement of Velu’s theorem:

TugoreM A (Velu [10)). Let E be an elliptic curve given by the equation
3= x® 4 ax® + bx + ¢, defined over the rationals Q and let F be a
finite subgroup of E. Let F, be the set of points of F—{I} (I the identity of
E) of order 2, R the set of points of F—{I}— F, such that

and let S=Fy, UR. Lett= Y, to,w = Y (ug + Xgtg), where if
ges ges
$(x ) is written for X* + ax® + bx + ¢ — )*, then

go = (24/0x)a, 80 = (84/9)as uo = (80)°

fa={ & ifQEF,
220 ifQ ¢ F,

where we write Q = (xg, yg). Let E* be the curve
yﬂ=x3+ax’+ (b-—'St)x+(c—4at — 7W)o
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Then the map f: E — E* given by f: (x, y) - (X, Y), where

X=x+2{t° + —2 },

ges |X — Xgo (x - XQ)a

- 2yu ! a) — 8082
Y_y_aé" {(x xaa)a+ e g Q}

(* — xg)?

is an isogeny from E to E* with kernel F. Moreover iff, is any other
isogeny from E to E’ with kernel f, = f, then E’ and E* are birationally
equivalent.

The order of the kernel F ‘is called the degree of the isogeny. The
construction of the isogenies is affected as follows: Let

E: y® = x(x*+ ax+ b) | ¢))

be an elliptic curve. We know that (0, 0) is a point of E of order 2.
Let F= {I, (0, 0)}. By Theorem A, the curve

E* 38 = x(x® — 2ax + (a® — 4b)) ' @
is isogenous to (1), the isogeny having kernel F. Hence

x(x2+ ax 4 b\ _ x(x2 — 2ax 4 (a® — 4b)) ’
(TErztb)- = | ) ®
(mod p) p x(mod 7) p

for every, prime p#2, 3 and not dividing the discriminant 1658 (a® — 4b).
It is not difficult to see that (3) holds even for p =23 and for primes
p >3 that divide the discriminant 165°(a® — 4b). For p = 3, a direct
hand calculation gives the result. For p > 3 dividing the discriminant,
either p| borp | a® —4b. In the first case result follows on letting
x = x — a in the left side of (3). In the second case, letting x — (x —2a)/4
gives the result. Hence we get

THEOREM 1. For any odd prime p and integers a, b, the equation (3)
holds.

Remarks: 1. A particular case of Theorem 1 (witha = — 4,b = 2)
was proved by Williams (12]. His proof can be generalized to realise
Theorem 1 as follows;

’i’ (x(x“ + ax + b)) nl (x + bix + a)

i) ¥4

-7 (598500

X=0
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where
X =(x+5/x)

- (X(X”—2ax+a9—-4b))
X(mod p) p

as required.

2. The transformation of Remark 1 is precisely the same as that in
Velu’s theorem in the present particular case.

So much for the isogeny of degree 2.

Next let E: y? = x3 4 ax® + bx + ¢ be an elliptic curve with ¢ 5 0.
Then P = (0, 4/c) is a point of E of order 3 if and only if b® = 4ac.
When this is so, we see, by Velu’s theorem that the curve

E*®; 8 =x3 4 ax® — 9bx — (27 ¢ + 8ab)
is isogenous to E, the kernel of the isogeny being {I, 4 P}. It follows

that _
(xa + ax® — 9bx — (27¢ + 8ab)

x(m§ ») ( P
“@

for primes p 7% 2, 3 and not dividing the discriminant 8(5® — 54 ¢%) of E.
Here again we shall show that (4) holds for p = 3 and for primes p > 3
that divide the discriminant 8(5® — 54¢%). For p = 3 a direct hand calcula-
tion gives the result. So let P(> 3) be a prime that divides the discrimi-

nant. We have

x(mod

x"+ax’+bx+c)

x(mod P)

(i) &= 54c* (mod p), and

(i) B® = 4ac (by hypothesis).

These give ’
27b = 8a® and 27%¢c = 16a°. )

Now let x —» (3x — 8a)/27 in the left hand side of (4) and using (5) we
get the right hand side. Hence we have

TuroreM 2. For any odd prime p and integers a, b, c satisfying b® = 4ac,
the equation (4) holds.

§ 2. Applications. As our first application, we look at elliptic curves
with.complex multiplication. In addition to the nine elliptic curves En
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defined over the rationals Q, with End E, equal to the full ring of
integers of Q(v/—m), m= 1, 2, 3, 7, 11, 19, 43, 67, 163, there are exactly
four other curves, defined over Q, whose endomorphism rings are proper
subrings of the full ring. They are C;: y® = f}(x) (j =1, 2, 3, 4), where

Hi(x) = x3— 622+ x  with End C, = Z[2i],
fi(x) = x* 4 6x? — 3x  with End C, = Z[y/-3],
fi(%) = x® — 42x® — Tx with End Cy =2Z[/ 7],

%) = x® — 120x + 506 with End C, =Z [ﬂi*—zx/_—_-*)]

We wish to evaluate the character sums >, (f)(x)/p).
x(p)
CoroLLATY 1. The character sum 3~ (f,(x)/p)

2ifp=1(4), p=a+ b, a=2+ G) (mod 4),

0 if p=3(4).
- Proof.
2(@) s (xa -~ t;x8+ x) -5 (x8+ 12.;*+ 32x)

(by Theorem 1)
=3 (fi'}_pxﬂ‘) (by letting x — 4x)

- Z(x(x+ 1;(x+2))=z(x°;x)

(by letting x—>x — 1).

Now this last character sum is known ({11, [2], [4], [9]), since y® = x*—x
is the eliptic curve E, mentioned above. This completes the proof.

COROLLARY 2. The character sum

2aif p=103), p=a + 3b%, a=—1(3),
.ZU;(x)/p) = {o if p =20).
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Proof.
SO =X (x_‘%ﬂ—&) _5 (xﬂ_IZ;” + 48x)

(by Theorem 1)

x3—3x% 4 3x

=3 ( a (by letting X 4x)
-3 (".3"‘_1) (by letting x— x + 1).

Hett y® = x3 4 1 is the elliptic curve E; and so the above sum is known
(see [5), [6]). This completes the proof.

COROLLARY 3. The character sum

20if (p/T) =1, p=c4Td% (c]T) =-—1,

S —-{
@D =0 ey =—1.

Proof.

o (FP—928—Tx\ _ (24 8432 4 179%
SUil = £ (FEET)  p (L 1B
(by Theorem 1)

X3 + 21x
— 2( + JIc,’+ 112x
Here y® = x® 4- 21x® 4- 112x is the curve E, and so the above sum is
known (see [7]). This completes the proof.

) (by letting x - 4x).

COROLLARY 4. The character sum

aifp=1 l,4 = a® 4 27b%, (a/3) = (2/p)
Sl = { i G 4p=2d*+ (a/3)
0 if p= 2(3).

Proof.

—_ 18x2—12x + 2
SUitn) = = (E12EE 36 _ (22 )
(by letting x > x + 6)

_s (x’ + 18x2 -I; 108x + 1674) (by Theorem 2)
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=3 (x3+ 1458

7 ) (by letting x - x—6)

=3 (i;'—z) (by letting x> 9x).

This last equation also holds for P = 3 clearly. Here y® = x3 4 2 is just
E, and so this last sum is known This completes the proof.

Williams [11]), using different techniques, bhas also obtained certain
identities and he remarks (on page 297 of [11]) that these identities can
be used to evalute > (f(x)/p), j= 1, 2, 3.

It is also interesting to evaluate these sums > (f;(x)/p) directly using
the relevant division points and then applying the Frobenius automor-
phism. Poulakis [3] evaluates 3~ (f,(x)/p) using this very procedure.

As further applications we now obtain some more identities by applying

theorem 2 to character sums of the type }_ (x—'*ix-s—ﬂ)

For an arbitrary integer k £ 0, we have
 [*®+ ax® 4 bx (x + k) + a(x + k)® + b(x + k)
/)= z —p
(x°+Ax9+Bx+C)
=3 > R

where A =3k +a, B=3k®+2ak+ b, C=kK®+ ak®+ bk, so that
B®=4AC if and only if 3k* + 4ak® + 66k8—b® = 0, i.e. if and only if
(6k + 6)*—a® = 3(b/k—3k)® i.e. if and only if k|band u=6k+ a,
v = b/k—3k satisfy the Pellian equation

ut—3v? = ad, (5)
Thus for a solution (v, v) of (5), satisfying u=a(mod 6), k = (u—a)/6,
b= k(v + 3k), B® = 4AC. Let d = ((u—a)/6, (u-+a)/2). Then 42 —a=3»*
gives

U — a = 6As®
U+ a=01 (©)
v = 2)8¢
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for some integers A, s, £ (with A = 4 d) and conversely for each value of
A, 8, ¢, the Pellian equation (5) is satisfied by the quantities u, a, vdefine~
by (6). Hence

> (xa + ax® 4 bx)
=Y (x° + A(12— 3sa)xsp+ A%?(3s + 2,)x)

_ (x" -+ A2 + 2038 (s + £)x + Ms¥(s + 1)
P

(on letting x - x + k)

=3 (x’ + ar3x3— 18A3s¥(s +- 1)x—A%27s%(s + ) 4 165%3(s +- t)))
N P

(by Theorem 2)

> X8 4 A(9s? + 1252 4 ¢9)x® 4 A%s(3s + 2t)'x)
p

(on letting x — x -+ A(3s% 4 4s7).
In particular, for s = 1, A =—1, we get the following

THEOREM 3. For any integer t and odd prime p we have

§ (x(x’ it’—3)x + (2t + 3)))
x{mod p)

X(x3— (2 + 12t 4-9)x + (21 + 3)8)
k(mgap)( )4 % )

For t =--2, this gives

(ﬂx’. it )) (:_:gxa + 11x— ))
x(mod ) ,(mod P)

‘We gather from E.Lehmer, that an ‘elementary proof of this is desis
rable.
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