
Vol 71(5) | May 2023 | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels | 671

1.0 Introduction

Any system works well if its components work well.
Components work well if they have proper cooperation1.
Cooperation2 comes from some inbuilt qualities3. The
qualities can be learning, reasoning, mobility, proactivity4 etc.
These qualities are inherent for Agents5. So the maximum
efficiency6 can be expected from a system if it is designed7,8

with the help of multiple Agents. Designing the
architecture9,10 of a multi Agent system is easy compared to
make Agents function in an efficient and synchronous way.
The term ‘efficient’ implies that the most efficient Agent
should be selected from each goal. The term ‘synchronous’
implies that one Agent can participate for serving many goals.
But if efficiency is combined with the term synchronous it
means a lot! It means, the most efficient Agent should be

chosen from each goal. As the same Agent can participate in
several goals to achieve synchronization then the most
efficient Agent called from one goal can be busy serving the
purpose of other goal. So, first goal cannot get the Agent
with highest efficiency until and unless that particular Agent
is freed by the second goal. There are two solutions of this
problem, either first goal has to wait for the second goal to
release the Agent or to start the work with next efficient
Agent. To find out the solution of such kind of problem which
can be caused because efficiency maximization in Multi Agent
based synchronized environment – this paper is designed.

The proposed work is started with analyzing the Agent
properties such as autonomy, reasoning, proactivity, learning
etc. and finding out the relationships and interdependence
between the properties. Then the work is continued with an
efficient algorithm to calculate the efficiency of Agents based
on their properties, acting in a synchronized multi Agent
based environment for serving several goals.

Maximizing the Efficiency of Multi Agents based
Systems in a Synchronous Environment

Chandanita Thakur1*, Shibakali Gupta2

1*Department of Computer Science and Engineering, Swamy Vivekananda University, Barrackpore, West Bengal, India.
Email: thakur.chandanita@gmail.com
2Department of Computer Science and Engineering, UIT, Burdwan University, West Bengal, India.

Abstract

Evaluation of performance and efficiency is an important ingredient for any system design. A system can be comprised
many components. Components can be hardware or software. Each component needs technical support to have proper
cooperation among them. Cooperation can be better provided if they have autonomy, reasoning, proactivity, mobility and
capability of learning. These qualities are inherent for Agents. Software Agents can cooperate, coordinate and negotiate
much better than the way we cooperate, coordinate and negotiate with each other. So it is obvious that the system
designed with the cooperation of multiple Agents i.e. Multi Agent System can produce higher throughput than most of the
other existing systems .So the aim of the present work is to analyze and make a relationship between multiple Agent
properties like proactivity, learning, reasoning, mobility, etc. and finally proposing an efficient algorithm to calculate the
efficiency of Agents based on their properties and make them to work simultaneously in a multi Agent environment, for
satisfying several goals.

Keywords: Multi Agent System (MAS), Agent Properties, Efficiency, Proactivity.

Print ISSN : 0022-2755

Journal of Mines, Metals and Fuels
Contents available at: www.informaticsjournals.com/index.php/jmmf

*Author for correspondence

Journal of Mines, Metals and Fuels, 71(5): 671-677; 2023. DOI: 10.18311/jmmf/2023/34168

672 | Vol 71(5) | May 2023 | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels

2.0 Properties of Agents

All the Agents should exhibit some properties. Some
properties of the agents are described below:
 1. Autonomy: It is the property of the agents which helps

them work independently and exhibit control over their
internal state. If the agent is autonomous its behaviour
will be determined by its own experience.

2. Learning: Learning allows agent to operate initially in an
unknown environment. Learning modifies the performance
of an Agent. It is required for true autonomy.

3. Reasoning: Reasoning enables agent to think something
in a logical way in order to form a conclusion or
judgement.

4. Proactivity: Proactivity enables agents to maintain an
ongoing interaction with its environment and responds to
challenges that occur in it. An agent may be able to exhibit
goal-directed behaviour by taking the initiative.

5. Reactivity: Reactivity makes an Agent to perceive and act
to some degree, on its close environment. A reactive agent
can respond in a timely fashion to changes, that occur
around it.

6. Rationality: For each possible percept sequence, a rational
agent should select an action that is expected to maximize
its performance measure, given the evidence provided by
the percept sequence and whatever built-in knowledge the
agent has.

7. Mobility: It is the ability of agent to move around the
electronic circuit or its environment.

3.0 Why the Property Proactivity
is Choosen?

From the thorough state of art review, (need to go through
reference paper 13-24) we can find out that there is no work
done on the relationship of agent properties. Some authors
have utilized the properties of agent to achieve their goal, but
they have selected that very property in their paper as a
solution of the basic need they wanted to fulfill. The reason
for choosing that very property is not justified in those
papers. Those properties are learning, reactivity, autonomy,
rigidity, reasoning, rationality, negotiation etc. One more
important thing is, in recent papers there is no work done by
utilizing proactive agent from 2012 to 2016.

From the discussion of Agent properties mentioned in this
paper in section (II), it is clear that proactivity is an essential
ingredient for an Agent, if maximum efficiency is needed to
achieve from some real-time system where Agent is applied.
In our current work our need is to maximize the efficiency. So
in our recent paper, we took an attempt to calculate the
efficiency in terms of Proactivity.

4.0 Relationship Between Agent’s
Properties

Along with proactivity, reasoning and learning etc. also are
very important properties that the agent must have. So the
Agents to be used for solving the above mentioned
challenge, (introduced in Section II) efficiency can be
calculated (in terms of Proactivity) by taking other properties
as input.

We have gone through many books25,26 and papers13-24

to find out the dependencies and relationships between the
agent properties, as very few works has been done on it. As
a result of which, we have tried to concentrate on some
important properties where, the change in one property can
cause the change in other properties. Specially in our present
work we have tried to find out the relationship of few among
all properties which affects Proactivity, because our aim is to
calculate efficiency in terms of Proactivity.

So the present section of this paper, first analyzes the
relationship and interdependency between agent’s properties
and then calculates efficiency in terms of proactivity by taking
reasoning, learning and mobility etc. as input.

increase
f1: Reasoning ––––––– (Rationality, Proactivity) ... (1)

[Let say, increase in Reasoning causes Rationality to
increase a factor of x1 and increase in Reasoning causes
Proactivity to increase a factor of y1. Value of x1 and y1 can
be integer or float or exponential. Based on the values of x1
and y1, we can tell whether rationality and proactivity has
linear or exponential relationship with reasoning]

increase
f2: Learning ––––––(Reactivity, Autonomy) ... (2)

[Let say, increase in learning causes reactivity to increase
a factor of x2 and increase in learning causes autonomy to
increase a factor of y2. Value of x2 and y2 can be integer or
float or exponential. Based on the values of x2 and y2, we
can tell whether reactivity and autonomy has linear or
exponential relationship with learning]

increase
 f3: Autonomy –––––– (Proactivity) (3)

[Let say increase in autonomy causes reactivity to
increase a factor of y3. Value of y2 can be integer or float or
exponential. Based on the value of y2 we can tell whether
Proactivity has linear or exponential relationship with
autonomy]

So we can write Proactivity = y1 * Reasoning
[From 1]

Autonomy = y2 * Learning
[From 2]

Proactivity = y3 * Autonomy
 [From 3]

Chandanita Thakur, Shibakali Gupta

Vol 71(5) | May 2023 | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels | 673

From 2 and 3 we get
Proactivity = Y2 * y3 * Learning (4)

So some values can be assigned as input for learning,
reasoning and mobility (other properties like autonomy,
rationality etc. can be neglected and efficiency can be
calculated with the help of reasoning, learning and mobility
because reasoning and learning are interrelated with
autonomy, rationality) for each proactive agent and the values
of y1, y2, y3 (x1, x2 if needed) according to the nature of the
system. Hence, we can calculate the value of proactivity as:

Proactivity = y1 * Reasoning ...1
Proactivity = Y2 * y3 * Learning ...4
So total Proactivity = (y1 * Reasoning) +
(Y2 * y3 * Learning) + Mobility
[Mobility can be given as input]

5.0 An Efficient Algorithm Based
On Agent’s Properties

A. Idea behind the algorithm

1. Situation (with real life example) – Let us consider an
automated hospital implemented27 by Multiagent system.
Reception agent can be treated as the coordinator agent
who can coordinate all the activities for a patient from
admission to discharge and it will have many goals like
searching for rooms, dealing with insurance agent, word
agent and hospital management agent for patient
admission, doing preliminary checkup by nurse agent,
arrangement of doctor agent, investigation for patient by
investigation agent, maintaining daily account information
by account agent for individual patients etc. These goals
can be executed in any order according to their priority
and can be repeated any number of times according to the
condition of the patient. Example, for emergency patient,
after admission, immediately doctor will be called. Many
agents can be involved in each goals, some of them can
be common for many goals. As there can be some agents
participating for many goals, there will be a situation
(synchronization problem) where the same agent is
selected by many goals. For example, same nurse agent
can be engaged (say, by goal 3) in Patient’s Investigation
and at the same time can be called for making discharge
summary for patient discharge (say, by goal 6)

2. Main Idea – In most of the multi agent system (based on
the above situation), one main agent will coordinate the
activity of all other agents. Main agent is named here as
coordinator agent (CA). Coordinator agent is the starting
agent which has many goals (let say m numbers of goals)
to serve. According to the situation, coordinator agent
can change the priority of the goal. For each goal there

will be some specific agents. One agent can participate in
multiple goals. External priority (decreasing number
implies increasing priority) is set for all the goals and goals
are initially arranged according to their priority. Let say
goal1 is with highest and goalm is with lowest priority. So
goal1 must be called by the coordinator agent when
system will start executing. During the system execution,
goal with any priority can be called according to the
requirement of the system. For satisfying each goal, any
number of Agents can be involved. Number of agents may
vary from goal one to goal n (n can be any finite number).
Number of Agents are specific for a particular goal as

shown in Fig.1. For goal1, required number of agents are 1 to
n1. For goal 2, required number of agents are 2 to n2. For
goaln, required number of agents are 1 to n3 etc. For
efficiency maximization, system will try to call the most
efficient agent from goal1. After that, goals and agents can
be chosen in the following way:
 1. After goal1 starts, goal 2 can also start (on or before

completion of goal 1) with the most efficient Agent. The
same process can be continued sequentially up to a
certain goal (In the previous Agent based hospital
example let say, goal1 is patient admission, goal 2 is Room
allotment. So at the time patient is busy in taking
admission, Room can be allotted and doctor can be called
(may be goal 4).

 2. If Coordinator Agent needs to repeat some goals
according to system requirement, the sequential execution
of goal will be interrupted and Coordinator will move the
control back towards the increasing priority (decreasing
priority value). If we consider the Automated Hospital
Example, Investigation can be repeated again and again,
Doctor can be called again and again etc.

Figure 1: Agents interaction in a multi agent system

Maximizing the Efficiency of Multi Agents based Systems in a Synchronous Environment

674 | Vol 71(5) | May 2023 | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels

3. As the same Agent can be involved in two or more goals
(example, same person or Agent can take the patient
during admission as well as during investigation) and
same Agent can be the highest efficient Agent for more
than two goals (later it can happen between two or more
medium priority Agents also, which is shown in algorithm),
so the same Agent can be called from more than one goals
with a small fraction of time gap.

4. When one Agent is busy serving one goal (say goal1),
and called from another (can be many others also) goal
(say goal3), the execution of second goal (goal3) will be
suspended. To solve that problem Coordinator can go for
either of these three options
 i. Second goal can wait for the first goal to release that

particular Agent up to a time slice t
ii. Second goal can start executing with the next efficient

Agent, belongs to that goal.
iii. If the next efficient Agent is also busy next to next

efficient Agent should be called.
Until and unless the next efficient Agent is free, the same

process will be continued recursively.
5. When one Agent is busy, the busy state of the agent can

be intimated to all the agents . In the same way whenever
a busy agent is getting free, (shown in algorithm) can be
informed to all the goals. This method can help
Coordinator to take decision about which goal to start
with what agent.

B. Introduction of matrices used in
algorithm

For a specific system (here the system is multi agent
based), number and nature of goals (different types of works
can be done by the system) must be same for all the
applications. But out of all, how many goals are needed and
the priority of the goals can change from application to
application where the system is going to be used.

Step 1: Before starting any application, priority should be
assigned to all the goals and will be intimated to Coordinator
agent. In the present work it is assumed that the goals in Fig.1
is arranged according to descending priority (increasing
priority means decreasing priority value).

Step 2: Next the system will take the value of Agent [m][n]
matrix which gives the details of agent’s participation in each
and every group. Consider the 1st row of agent matrix given
in Fig.2.

For goal 1, agent 1, agent 3, agent 4 etc. are involved, so
the value 1, 3, 4 are entered in columns 1, 3, 4. As agent 2 and
agent n is not participating for goal 1, so the value 0 is entered
in column 2 and n etc.

Step 3: Next step is to calculate the efficiency for each
Agent having non zero value by using calculate_efficiency
function. Efficiency values for all the agents are stored in

efficiency [m][n] matrix. (if a particular agent is not present
for a specific goal, efficiency of that agent is taken as 0). For
example in automated hospital, nurse agent is not responsible
for patient admission (say goal1) but responsible for calling
doctor (say goal 3), investigation (say goal 4) etc. If nurse
agent is named as A2, for goal 1 its entry will be 0.

Figure 2: Input agent matrix

Figure 3: Efficiency matrix

Step 4: Sort_efficiency [m][n] matrix will take the copy of
the values of efficiency matrix. Then the values will be sorted
using swap function in descending order and will be stored.
Agent with highest efficiency will be called for each goal.

Figure 4: Efficiency matrix sorted in descending order

The same agent can be involved in more than one goals.
Ex. If agent 1 is serving for goal1 and at the same time called
from goaln., goaln cannot be served. So after a finite time(t)

Chandanita Thakur, Shibakali Gupta

Vol 71(5) | May 2023 | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels | 675

expires goaln can be started with the agent with next higher
efficiency. If that is also busy, agent with next higher
efficiency can be called. The intension of making
sort_efficiency[m][n] matrix is to provide the next efficiency
value when the agent, holding the present efficiency (treated
as highest efficient presently) value, is busy to serve some
other goal.

Drawback of sort_efficiency [m][n] is, it does not give the
agent number with highest efficiency. For all the goal highest
efficient agent is the agent present in the first column, but for
goal 1 it is agent 3, goal 2 it is agent 1, goal 3 it is agent 1,
goal 4 it is agent 4, goal n it is agent 4 etc. So from the highest
efficiency value, it is not possible to predict the agent number
from the present matrix. In efficiency matrix, efficiency is
sorted here, not agents. But together from sort Efficiency
[m][n] and efficiency[m][n] matrix it is very clear that 9 is the
efficiency value of agent 3. (As the agents are not sorted, so
first to last column, cannot be marked as A1 to An in Fig 4 as
it is marked in Fig.3). So, to find out the agent number
corresponding to a particular efficiency, some mapping is
needed between the two matrices sort_efficiency [m][n] and
efficiency [m][n].

Step 5: So next step is to built a matrix highest_ efficiency
where only first element (first column) will have the highest
efficiency value for the corresponding goal. To save the
original column index of that highest efficiency value (which
is nothing but the original column index of the Agent having
highest efficiency) another matrix Index [m] is needed.

k gives the original column index of Agents (present in Agent
or Efficiency matrix in Fig.2 and Fig.3). So that ‘k’ value should
be stored and updated (last updated value will be the column
index of the original Agent with highest efficiency) in an array
every time when the swap() function is called. When swap
function will be called for the last time, that final k value will
be stored in Index matrix and will provide the column value of
highest efficiency matrix (calculation of row value is not
dependent on matrix, shown in algorithm).

Index[I][J] = [3 2 1 3 3]
Algorithm
Define maximum_no_of_group m
Define no_of_ maximum_ agents_ in_a_group n
Float reasoning [m][n];
Float learning [m][n];
Float mobility [m][n];
Read y1, y2, y3;
G [m];
Efficiency [m][n];
Sort_ Efficiency [m][n];
Highest_ Efficiency [m][n];
Agent [m][n];
Read Agent [m][n] //Read the value of agents
for a particular goal as
(i) 1 in first column, if

Agent 1 is needed
(ii) 2 in second column, if

Agent 2 is needed
...

(iii) 0 if that particular Agent
is not needed

 /* Coordinator Agent (CA) will start with first goal
 from m number of assigned Goals */
 /*Goals are arranged according to priority i.e goal1
 is having highest priority*/
 For I 1 to m
 Select Goal G[I] from CA
 For J 1 to n
 Select Agent[I][J] for Goal G[I] //Select
 first Agent from first Goal
 if Agent [I][J] = 0
 Efficiency [I][J] = 0
 else
Efficiency [I][J] = Calculate_Efficiency (Agent[I][J])/*

Efficiency matrix will hold the values of efficiency For all the
Agents for all the goals from 1 to m*/

 For I 1 to m
 For J 1 to n
 Sort_Efficiency [I][J] = Efficiency[I][J]
 //Copy the value of Efficiency
 to Sort_Efficiency

Figure 5: Matrix having highest efficiency value for each goal

The above concept can be explained with the help of
highest_efficiency array. Initially highest_efficiency matrix
will take the copy of values of efficiency matrix. Consider any
one row, let us take last row efficiency value, which are .2 .2
.3 .9 …0 . If some sorting met

Hod (explained in algorithm) is applied in descending order
only for first iteration (i.e for j=1 and k=1 to n-1 shown in
algorithm), with calling of swap() function when the former
value is greater than later. First swap function will be called
For j=1 and k=3 and nth row will be sorted as .3 .2 .2 .9 …0
(because .3>.2). Second swap() function will be called for j=1
and k= 4 nth row will be re-sorted as .9 .2 .2 .3 …0 (because .9
> .3). For the present situation this is the sorted nth row where

Maximizing the Efficiency of Multi Agents based Systems in a Synchronous Environment

676 | Vol 71(5) | May 2023 | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels

 Highest_Efficiency [I][J] = Efficiency [I][J]
 //Copy the value of Efficiency
to Highest_Efficiency
For I 1 to m //Sort the efficiency of

 agents for each goal
For J 1 to n
 For K J+1 to n-1
 If Sort_Efficiency [I][J] < Sort_Efficiency [I][k]
 Swap (& I, & J, & k)
/* For each group, Agents will be sorted in descending

Order. So first Agent will be the agent with highest
efficiency*/

For I 1 to m //Sort the efficiency of
 agents for each goal
 For J 1
 For K J+1 to n-1
 If Sort_Efficiency [I][J] < Sort_Efficiency [I][k]
 Swap (& I, & J, & k)
 x=J //J is the index of highest efficiency

 agent in each goal
 Index [I] = x // Index [I] will store the index
 of highest efficiency Agent in each goal
/* Highest_efficiency is a matrix having m rows and n

columns where first column stores the most efficient Agent
from each goal */

/* Index array holds the column index of Agent with
highest efficiency*/

/* So the Agent with highest efficiency will be called first */
Coordinator agent can execute wait (goal no) system call

when it is not necessary to start and can make signal (goal
no) = true, when want to start.

I 1
While (true) // Implies Agent number
 is in between 1 to m
If signal (I)= = true
q = index[I] //q- is column index of highest

 efficiency agent for goal 1
No = 2 // If first Agent is not free, need
 to call second efficient agent
from Sort_Efficiency [I] [No]

If Agent [I] [q] is free allocate Agent[I][q]
else
Number = Calculate_next _efficient
 _Agent (Sort_Efficiency[I][No])
Allocate Agent [I][Number]
else
i++ //go for next goal & check
 for semaphore value
/* The above mentioned procedure for calling next

efficient agent can be implemented with the help of
synchronization */

/* One Agent may participate to fulfil several Goals and
can be called at the same time .If a finite time(t) expires, the
Agent with next higher efficiency can be called */

If Agent [I][J] is the Agent with highest efficiency
/* Check Agent[I][J] for concurrent use*/
/* use1 and use 2 are two synchronized function. If an

Agent is busy serving one goal (say goal 2) and called from
other goal (say goal 4), it (goal 4) has to wait .If a finite time (t)
expires, CA will start the goal with next efficient agent by calling
calculate_next_efficient_agent (sort_efficiency [I][J], I) */

Check_concurrent_use (Agent[Ii][Jj])
For J Jj
For I 1i
For k 1 to m
If signal (Agent [I][J]) = = signal (Agent [K][J])
 Use1 (Agent [I][J])
 else
 use 2 (Agent [I][J])
boolean valueset=false
synchronized float use1 (Agent[I][J])
if (! Valueset)
 try
 wait();
 Catch (Interrupted Exception e)
 Print (Agent [I][J]can not be used)
 If wait (Agent[I][J]) > t
Calculate_next_efficient_Agent_Sort_Efficiency
 ([I][No], I)
notify all(); //Will notify other goal about the
 status of present Agent
valueset = false
Notify();
Return (Proactivity (Agent [I][J]))
synchronized float use2 (Agent [I+1][J])
 if(valueset)
 try
 wait();
Catch (InterruptedException e)
 Print(Agent[I+1][J]can be used)
valueset = true
Notify All ();
Calculate_Efficiency (Agent [x][y])
Proactivity = (y1 * Reasoning) + (Y2 * y3 * Learning)
+ Mobility[x][y]
 Return (Proactivity)
int Calculate_next_efficient_Agent (Sort_Efficiency[p]
[No], p)
For I p
 For J 1 to n
If Efficiency [I][J] = = Sort_Efficiency [p][No]
Exit ();
If Agent [I][J] is free
Return J;

Chandanita Thakur, Shibakali Gupta

Vol 71(5) | May 2023 | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels | 677

else
Calculate_next_efficient_Agent (Sort_Efficiency[p][No+1])
/* Recursive function Calculate_next_efficient_Agent will

be keep on calling the next Agent if the present highest
efficiency Agent is busy and will send the column index of
available highest efficiency Agent */

 void Swap (int *I, int *J, int *k)
 Temp = Sort_Efficiency[I]
 Sort_Efficiency[I][J] = Sort_Efficiency[I][k]
 Sort_ Efficiency[I][k] = Temp
Result : For the same work, goals (In turn efficiency of

agent) can be selected in different ways. The different ways
can be called as choice (C1, C2, C3).This is the graph between
choice and efficiency. Choice 5 i.e C5 is best.

7.0 Reference

1. Michael Wooldridge, ‘An Introduction to Multi Agent
Systems’, Department of Computer Science, University
of Liverpool, UK, JOHN WILEY & SONS, LTD.

2. Katia P.Sycara, ‘Multi Agent Systems’, 1998.
3. M. E. Bratman, ‘Intentions, Plans, and Practical

Reason’, Harvard University Press, Cambridge, MA,
1987.

4. Kresimir Jurasovic Gordan Jezic Mario Kusek, ‘A
Performance Analysis of Multi-Agent System’.

5. Amit K . Chopra and Munindar P. Singh, ‘An
Architecture for Multi-Agent Systems : An approach
Based on Commitments’, Universit‘a degli Studi di
Trento, North Carolina State University.

6. Winikoff. M, ‘Implementing commitment-based
interactions’, Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multi
Agent Systems 2007.

7. A. Garcia et al, ‘Separation of Concerns in Multi-agent
Systems : An Empirical Study’, In: Software
Engineering for Multi-Agent Systems II, Springer,
LNCS 2940, April 2004.

8. A. Pace et al., ‘Assisting the Development of aspect-
based MAS using the Smart Weaver Approach’, In:
“Software Engineering for Large-Scale MASs”, LNCS
2603, March 2003.

9. K. Potiron et al., ‘Multi-Agent System Properties’,
Chapter 2, From Fault Classification to Fault Tolerance
for Multi-Agent System, Springer Briefs in Computer
Science, DOI: 10.1007/978-1-4471-5046-6_2, _ The
Author(s) 2013.

10. Sara Maalal, Malika Addou, ‘ A new approach of
designing Multi-Agent Systems With a practical
sample ’, IJACSA International Journal of Advanced
Computer Science and Applications, Vol. 2, No. 11,
2011.

11. Mihaela Oprea, ‘Applications of multi-agent systems’,
University of Ploiesti, Department of Informatics, Bd.
Bucuresti Nr. 39, Ploiesti, Romania.

12. Onn Shehory, ‘Architectural Properties of Multi-
Agent Systems’, CMU-RI-TR-98-28, The Robotics
Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213, December 1998.

13. Elaine Rich, Kevin Knight, ‘Artificial Intelligence’
isbn=0071008942.

14. Kevin Knight, ‘Artificial Intelligence’ isbn=0070522634.
15. Chandanita Thakur, Dr. Shibakali Gupta Agent oriented

Intelligent Treatment Coordination System.

Figure 6: Graph between Choice and efficiency

6.0 Conclusions

For any system, efficiency, performance and throughput are
very closely related. If efficiency is increased, performance
will obviously increase; and increase in performance will in
turn increase the throughput of the system. Maximizing
throughput should be the intention of designing a system
and designing of efficient algorithm is one of the most
important way to make the system components to perform in
coordinated way to maximize the throughput. This paper is
presented a novel algorithm which helps any Multi Agent11,12

based system to perform with highest efficiency in a
synchronized way. The former part of the paper described the
relationship of Agent’s efficiency with its properties and the
later part showed how efficiently Agent can be utilized to
maximize the performance in a synchronized environment.
The later part of the paper has been experimented and the
result has been included in the paper. This work can be
implemented by using JADE to fulfil the need of efficiency
maximization raised in Multi Agent System.

Maximizing the Efficiency of Multi Agents based Systems in a Synchronous Environment

