Clinical Applications of Catechin in Dentistry : A Review
DOI:
https://doi.org/10.18311/jnr/2020/23941Keywords:
Catechin, Dentistry, Dental Caries, Periodontal Disease, Oral CancerAbstract
Studies on plant and food phytochemistry and its potential benefits to human health are becoming the focus of the research community. Researchers are turning to alternatives drugs in treating human diseases using natural products from plants and foods. Polyphenols are one of the largest groups in the plant family and consist of many subgroups. One of them is catechin, which is generally acknowledged to be part of a compound in tea. Over the years, investigations have shown that catechin has anti-oxidant, anti-inflammatory and antibacterial properties. In dentistry, documented evidence have shown the use of catechin in treatment of dental caries, periodontal disease, pulp pathology, and oral cancer. Other crucial areas of research include advancements in dental material incorporated with catechin. This review article explores the current studies on the potential use of catechin in dentistry.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2020-01-23
Published 2020-04-09
References
Ji H-F, Li X-J, Zhang H-Y. Natural products and drug discovery. can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Reports. 2009 Mar; 10(3):194–200. PMid:19229284 PMCid:PMC2658564
Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Natural Product Reports. 2000 Jun; 17(3):215–34. 0.1039/A902202C. https://doi.org/10.1039/a902202c. PMid:10888010
Castiglioni A. A History of Medicine. New York: Jason Aronson; 1985.
Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry. 2001 Nov; 49(11):5165–70. https://doi.org/10.1021/jf010697n. PMid:11714298
Silberstein RB, Pipingas A, Song J, Camfield DA, Nathan PJ, Stough C. Examining brain-cognition effects of ginkgo biloba extract: Brain activation in the left temporal and left prefrontal cortex in an object working memory task. Evidence-based Complementary and Alternative Medicine. 2011; 2011:164139. https://doi.org/10.1155/2011/164139. PMid:21941584 PMCid:PMC3166615
Morawiec T, Dziedzic A, Niedzielska I, Mertas A, Tanasiewicz M, Skaba D, et al. The biological activity of propolis-containing toothpaste on oral health environment in patients who underwent implant-supported prosthodontic rehabilitation. Evidence-based Complementary and Alternative Medicine. 2013; 2013:704947 https://doi.org/10.1155/2013/704947. PMid:23762153 PMCid:PMC3666428
Azaripour A, Mahmoodi B, Habibi E, Willershausen I, Schmidtmann I, Willershausen B. Effectiveness of a miswak extract-containing toothpaste on gingival inflammation: A randomized clinical trial. International Journal of Dental Hygiene. 2017 Aug; 15(3):195–202. https://doi.org/10.1111/ idh.12195. PMid:26694786
Malaguti M, Angeloni C, Hrelia S. Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxidative Medicine and Cellular Longevity. 2013; 2013:825928. https://doi.org/10.1155/2013/825928 PMid:23983900 PMCid:PMC3742027
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010 Dec; 2(12):1231–46. https://doi.org/10.3390/ nu2121231. PMid:22254006 PMCid:PMC3257627
Hackman RM, Pulagruto JA, Zhu QY, Sun B, Fujii H, Keen CL. Flavanols: digestion, absorption and bioactivity. Phytochemistry Reviews. 2008 Jan; 7:195–208. https://doi.org/10.1007/s11101-007-9070-4
de Pascual-Teresa S, Moreno DA, García-Viguera C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences. 2010 Apr; 11(4):1679–703. https://doi.org/10.3390/ ijms11041679. PMid:20480037 PMCid:PMC2871133
Demrow HS, Slane PR, Folts JD. Administration of wine and grape juice inhibits in vivo platelet activity an thrombosis in stenosed canine coronary arteries. Circulation. 1995 Feb; 91(4):1182–8. https://doi.org/10.1161/01.CIR.91.4.1182. PMid:7850957
Yamakuchi M, Bao C, Ferlito M, Lowenstein CJ. Epigallocatechin gallate inhibits endothelial exocytosis.
Biological Chemistry. 2008 Jul; 389(7):935–41. https://doi.org/10.1515/BC.2008.095. PMid:18627310 PMCid:PM C2846414
Singh B, Singh JP, Kaur A,Singh N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International. 2017 Nov; 101:1–16. https:/doi.org/10.1016/j.foodres.2017.09.026. PMid:28941672
Aguilera Y, Estrella I, Benitez V, Esteban RM, MartínCabrejas MA. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Research International. 2011 Apr; 44(3):774–80. https://doi.org/10.1016/j.foodres.2011.01.004
Chen PX, Tang Y, Marcone MF, Pauls PK, Zhang B, Liu R, et al. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chemistry. 2015 Oct; 185:298–308. https://doi.org/10.1016/j.foodchem.2015.03.100. PMid:25952872
Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. The Journal of Nutrition. 2003 Oct; 133(10):3275S–84S. https://doi.org/10.1093/jn/133.10.3275S. PMid:14519826
Jeong WS, Kim IW, Hu R, Kong AN. Modulatory properties of various natural chemopreventive agents on the activation of NF-kappaB signaling pathway. Pharmaceutical Research. 2004 Apr; 21(4):661-70. https://doi.org/10.1023/B:PHAM.0000022413.43212.cf. PMid:15139523
Lorrain B, Ky I, Pechamat L, Teissedre PL. Evolution of analysis of polyhenols from grapes, wines, and extracts. Molecules. 2013 Jan; 18(1):1076-100. https://doi.org/10.3390/molecules18011076 PMid:23325097 PMCid:PMC6269677
Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry. 2006; 99(1):191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
Kofink M, Papagiannopoulos M, Galensa R. (-)-Catechin in cocoa and chocolate: Occurence and analysis of an atypical flavan-3-ol enantiomer. Molecules. 2007 Jul; 12(7):1274– 88. https://doi.org/10.3390/12071274. PMid:17909484 PMCid:PMC6149454
Panneerselvam M, Tsutsumi YM, Bonds JA, Horikawa YT, Saldana M, Dalton ND, et al. Dark chocolate receptors: Epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation. American Journal of Physiology - Heart and Circulatory Physiology. 2010 Nov; 299(5):H1604–9 https://doi.org/10.1152/ ajpheart.00073.2010. PMid:20833967 PMCid:PMC2993198
Gopal J, Muthu M, Paul D, Kim DH, Chun S. Bactericidal activity of green tea extracts: The importance of catechin containing nano particles. Scientific Reports. 2016 Jan; 6:19710. https://doi.org/10.1038/srep19710 PMid:26818408 PMCid:PMC4730195
Kawamura J, Takeo T. Antibacterial activity of tea catechin to Streptococcus mutans. The Japanese Society for Food Science and Technology. 1989; 36:463–7. https://doi.org/10.3136/nskkk1962.36.6_463
Rasheed A, Haider M. Antibacterial activity of Camellia sinensis extracts against dental caries. Archives of Pharmacal Research. 1998 Jun; 21(3):348–52. https://doi.org/10.1007/BF02975300. PMid:9875456
Ikigai H, Nakae T, Hara Y, Shimamura T. Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta. 1993 Apr; 1147(1):132–6. https://doi.org/10.1016/00052736(93)90323-R
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Frontiers in Microbiology. 2016 Feb; 7:53. https://doi.org/10.3389/fmicb.2016.00053. PMid:26903954 PMCid:PMC4746253
Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev [Internet]. 1980 Jun; 44(2): 331–84. https://doi.org/10.1128/MMBR.44.2.331384.1980. PMid:6446023 PMCid:PMC373181
Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrobial Agents and Chemotherapy. 2002 May; 46(5):1302–9. https://doi.org/10.1128/AAC.46.5.1302-1309.2002. PMid:11959560 PMCid:PMC127145
Hasan S, Singh K, Danisuddin M, Verma PK, Khan AU. Inhibition of major virulence pathways of Streptococcus mutans by Quercitrin and Deoxynojirimycin: A synergistic approach of infection control. PLoS One. 2014 Mar; 9(3):e91736. https://doi.org/10.1371/journal.pone.0091736. PMid:24622055 PMCid:PMC3951425
Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrobial Agents and Chemotherapy. 2011 Mar; 55(3):1229–36. https://doi.org/10.1128/AAC.0101610. PMid:21149622 PMCid:PMC3067078
Hirasawa M, Takada K, Otake S. Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Research. 2006; 40(3):265–70. https://doi.org/10.1159/000092236. PMid:16707877
Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Archives of Oral Biology. 2012 Jun; 57(6):678–83. https://doi.org/10.1016/j.archoralbio. 2011.10.021. PMid:22169220
Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S, Watson GE, et al. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Research. 2010; 44(2):116– 26. https://doi.org/10.1159/000296306. PMid:20234135 PMCid:PMC2883842
Ferrazzano GF, Roberto L, Amato I, Cantile T, Sangianantoni G, Ingenito A. Antimicrobial properties of green tea extract against cariogenic microflora: An in vivo study. J Med Food. 2011 Sep; 14(9):907–11. https://doi.org/10.1089/ jmf.2010.0196. PMid:21612452
Goyal AK, Bhat M, Sharma M, Garg M, Khairwa A, Garg R. Effect of green tea mouth rinse on Streptococcus mutans in plaque and saliva in children: an in vivo study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2017 Jan–Mar; 35(1):41–6. https://doi.org/10.4103/09704388.199227. PMid:28139481
Tao DY, Shu CB, Lo EC, Lu HX, Feng XP. A randomized trial on the inhibitory effect of chewing gum containing tea polyphenol on caries. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2013 Fall; 38(1):6770. https://doi.org/10.17796/jcpd.38.1.c0tm02w572488064. PMid:24579286
Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005 Nov; 366(9499):1809–20. https://doi.org/10.1016/S0140-6736(05)67728-8
Zenobia C, Hajishengallis G. Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence. 2015; 6(3):236–43. https://doi.org/10.1080/21505594.2014.999567. PMid:25654623 PMCid:PMC4601496
Fitzpatrick RE, Wijeyewickrema LC, Pike RN. The gingipains: Scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiology. 2009 May; 4(4):471–87. https://doi.org/10.2217/fmb.09.18 PMid:19416015
Sakanaka S, Aizawa M, Kim M, Yamamoto T. Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis. Bioscience, Biotechnology, and Biochemistry. 1996 May; 60(5):745–9. https://doi.org/10.1271/bbb.60.745. PMid:8704303
Asahi Y, Noiri Y, Miura J, Maezono H, Yamaguchi M, Yamamoto R, et al. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms. Journal of Applied Microbiology. 2014 May; 116(5):1164–71. https:// doi.org/10.1111/jam.12458. PMid:24471579
Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Archives of Oral Biology. 2016 May; 65:35–43. https://doi.org/10.1016/j.archoralbio.2016.01.014. PMid:2 6849416
Schmuch J, Beckert S, Brandt S, Löhr G, Hermann F, Schmidt TJ, et al. Extract from Rumex acetosa L. for prophylaxis of periodontitis: Inhibition of bacterial in vitro adhesion and of gingipains of Porphyromonas gingivalis by epicatechin-3-O-(4β→8)-epicatechin-3O-gallate (procyanidin-B2-di-gallate). PLoS One. 2015 Mar [cited 2019 May 25]; 10(3):e0120130. https://doi.org/10.1371/journal.pone.0120130. PMid:25803708 PM Cid:PMC4372542
Sorsa T, Tjäderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, et al. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Annals of Medicine. 2006; 38(5):306–21. https://doi.org/10.1080/07853890600800103. PMid:16938801
Morin MP, Grenier D. Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts. Archives of Oral Biology. 2017 Mar; 75:89–99. https://doi. org/10.1016/j.archoralbio.2016.10.035. PMid:27825679
Maruyama T, Tomofuji T, Endo Y, Irie K, Azuma T, Ekuni D, et al. Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. Archives of Oral Biology. 2011 Jan; 56(1):48–53. https://doi.org/10.1016/j.archoralbio.2010.08.015. PMid:2 0869695
Rayyan M, Terkawi T, Abdo H, Abdel Azim D, Khalaf A, AlKhouli Z, et al. Efficacy of grape seed extract gel in the treatment of chronic periodontitis: A randomized clinical study. Journal of Investigative and Clinical Dentistry. 2018 May; 9(2):e12318. https://doi.org/10.1111/jicd.12318. PMid:29349878
Nakanishi T, Mukai K, Yumoto H, Hirao K, Hosokawa Y, Matsuo T. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. European Journal of Oral Sciences. 2010 Apr; 118(2):145– 50. https://doi.org/10.1111/j.1600-0722.2010.00714.x. PMi d:20487003
Hirao K, Yumoto H, Nakanishi T, Mukai K, Takahashi K, Takegawa D, et al. Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells. Life Sciences. 2010 Apr; 86(17–18):654–60. https://doi.org/10.1016/j.lfs.2010.02.017. PMid:20176036
Nakanishi T, Mukai K, Hosokawa Y, Takegawa D, Matsuo T. Catechins inhibit vascular endothelial growth factor production and cyclooxygenase-2 expression in human dental pulp cells. International Endodontic Journal. 2015 Mar; 48(3):277–82. https://doi.org/10.1111/iej.12312. PMid:24847951
Ismiyatin K, Wahluyo S, Purwanto B, Soetojo A, Rahayu RP, Mukono IS. Topical epigallocatechin-3-gallate hydrogels regulated inflammation and pain. Journal of International Dental and Medical Research. 2019 Jan; 12(1):54–60.
Lee P, Tan KS. Effects of epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch Oral Biol. 2015 Mar; 60(3):393–9. https://doi.org/10.1016/j.archoralbio.2014.11.014. PMid:25526623
Herrera DR, Durand-Ramirez JE, Falcí£o A, Silva EJ, Santos EB, Gomes BP. Antimicrobial activity and substantivity of Uncaria tomentosa in infected root canal dentin. Brazilian Oral Research. 2016 Apr; 30(1):e61. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0061
Katu H, Sumintarti, Mattulada IK, Samad R, Hatta M, As'ad S. Inhibitory concentration and minimum contact time gambir extract (Uncaria gambier Roxb) against bacterial growth Enterococcus faecalis. International Journal of Sciences: Basic and Applied Research. 2016; 27(3):239–46.
Kwon YS, Kim HJ, Hwang YC, Rosa V, Yu MK, Min KS. Effects of epigallocatechin gallate, an antibacterial crosslinking agent, on proliferation and differentiation of human dental pulp cells cultured in collagen scaffolds. Journal of Endodontics. 2017 Feb; 43(2):289–96. https://doi.org/10.1016/j.joen.2016.10.017. PMid:28132713
Lim ES, Lim MJ, Min KS, Kwon YS, Hwang YC, Yu MK, et al. Effects of epicatechin, a crosslinking agent, on human dental pulp cells cultured in collagen scaffolds. Journal of Applied Oral Science. 2016 Jan-Feb; 24(1):76–84. https:// doi.org/10.1590/1678-775720150383. PMid:27008260 PMCid:PMC4775013
Kulakowski D, Leme-Kraus AA, Nam JW, McAlpine J, Chen SN, Pauli GF, et al. Oligomeric proanthocyanidins released from dentin induce regenerative dental pulp cell response. Acta Biomater. 2017 Jun; 55:262–70. https://doi.org/10.1016/j.actbio.2017.03.051. PMid:28365481 PMC id:PMC5504470
Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: Aging and stability of the bonded interface. Dental Materials. 2008 Jan; 24(1):90–101. https://doi.org/10.1016/j.dental.2007.02.009. PMid:17442386
Huang-Lee LL, Cheung DT, Nimni ME. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. Journal of Biomedical Materials Research Part A. 1990 Sep; 24(9):1185–201. https://doi.org/10.1002/jbm.820240905. PMid:2120238
Al-Ammar A, Drummond JL, Bedran-Russo AK. The use of collagen cross-linking agents to enhance dentin bond strength. Journal of Biomedical Materials Research Part B. 2009 Oct; 91(1):419–24. https://doi.org/10.1002/ jbm.b.31417. PMid:19507140 PMCid:PMC2771399
Fang M, Liu R, Xiao Y, Li F, Wang D, Hou R, Chen J. Biomodification to dentin by a natural crosslinker improved the resin-dentin bonds. Journal of Dentistry. 2012 Jun; 40(6):458–66. https://doi.org/10.1016/j.jdent.2012.02.008. PMid:22366684
Liu Y, Chen M, Yao X, Xu C, Zhang Y, Wang Y. Enhancement in dentin collagen's biological stability after proanthocyanidins treatment in clinically relevant time periods. Dental Materials. 2013 Apr; 29(4):485–92. https://doi.org/10.1016/j.dental.2013.01.013. PMid:23434233 PMC id:PMC3640802
Castellan CS, Bedran-Russo AK, Karol S, Pereira PN. Long-term stability of dentin matrix following treatment with various natural collagen cross-linkers. Journal of the Mechanical Behavior of Biomedical Materials. 2011 Oct; 4(7): 1343–50. https://doi.org/10.1016/j.jmbbm.2011.05.003. PMid:21783144 PMCid:PMC3143368
Liu RR, Fang M, Zhang L, Tang CF, Dou Q, Chen JH. Anti-proteolytic capacity and bonding durability of proanthocyanidin-biomodified demineralized dentin matrix. Int J Oral Sci. 2014 Sep; 6(3):168–74. https://doi.org/10.1038/ijos.2014.22. PMid:24810807 PMCid:PMC4 170148
Hu J, Du X, Huang C, Fu D, Ouyang X, Wang Y. Antibacterial and physical properties of EGCG-containing glass ionomer cements. Journal of Dentistry. 2013 Oct; 41(10):927–34. https://doi.org/10.1016/j.jdent.2013.07.014 PMid:23911600
Pallan S, Furtado Araujo MV, Cilli R, Prakki A. Mechanical properties and characteristics of developmental copolymers incorporating catechin or chlorhexidine. Dental Materials. 2012 Jun; 28(6):687–94. https://doi.org/10.1016/j.dental.2012.03.003. PMid:22460187
Kato MT, Leite AL, Hannas AR, Calabria MP, Magalhí£es AC, Pereira JC, et al. Impact of protease inhibitors on dentin matrix degradation by collagenase. Journal of Dental Research. 2012 Dec; 91(12):1119–23. https://doi.org/10.1177/0022034512455801. PMid:23023765
Zarella BL, Buzalaf MA, Kato MT, Hannas AR, Salo T, Tjäderhane L, et al. Cytotoxicity and effect on protease activity of copolymer extracts containing catechin. Archives of Oral Biology. 2016 May; 65:66–71. https://doi.org/10.1016/j.archoralbio.2016.01.017. PMid:26867224
Mankovskaia A, Lévesque CM, Prakki A. Catechinincorporated dental copolymers inhibit growth of Streptococcus mutans. Journal of Applied Oral Science. 2013 Mar-Apr; 21(2):203–7. https://doi.org/10.1590/16787757201302430. PMid:23739855 PMCid:PMC3881876
Demeule M, Brossard M, Pagé M, Gingras D, Béliveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochimica et Biophysica Acta. 2000 Mar; 1478(1):51–60. https://doi.org/10.1016/S0167-4838(00)00009-1
Kato MT, Leite AL, Hannas AR, Buzalaf MA. Gels containing MMP inhibitors prevent dental erosion in situ. Journal of Dental Research. 2010 May; 89(5):468–72. https://doi.org/10.1177/0022034510363248 PMid:20200409
Neelakantan P, Sharma S, Shemesh H, Wesselink PR. Influence of irrigation sequence on the adhesion of root canal sealers to dentin: A Fourier transform infrared spectroscopy and push-out bond strength analysis. Journal of Dental Research. 2015 Jul; 41(7):1108–11. https://doi.org/10.1016/j.joen.2015.02.001. PMid:26008114
Pheenithicharoenkul S, Panichuttra A. Epigallocatechin-3gallate increased the push out bond strength of an epoxy resin sealer to root dentin. Dental Materials Journal. 2016 Dec; 35(6):888–92. https://doi.org/10.4012/dmj.2016-137. PMid:27680035
Fujiki H, Sueoka E, Rawangkan A, Suganuma M. Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. Journal of Cancer Research and Clinical Oncology. 2017 Dec; 143(12):2401–12. https:// doi.org/10.1007/s00432-017-2515-2. PMid:28942499 PMCid:PMC5693978
Hsu S, Farrey K, Wataha J, Lewis J, Borke J, Singh B, et al. Role of p21WAF1 in green tea polyphenol-induced growth arrest and apoptosis of oral carcinoma cells. Anticancer Research. 2005 Jan-Feb; 25(1A):63–7.
Lee JC, Chung LC, Chen YJ, Feng TH, Chen WT, Juang HH. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Letters. 2015 May; 360(2):310–8. https://doi.org/10.1016/j.canlet.2015.02.034 PMid:25721086
Hwang YS, Park KK, Chung WY. Epigallocatechin-3 gallate inhibits cancer invasion by repressing functional invadopodia formation in oral squamous cell carcinoma. European Journal of Pharmacology. 2013 Sep; 715(1– 3):286–95. https://doi.org/10.1016/j.ejphar.2013.05.008. PMid:23707351
Chen PN, Chu SC, Kuo H, Chou MY, Lin JK, Hsieh YS. Epigallocatechin-3 gallate inhibits invasion, epithelialmesenchymal transition, and tumor growth in oral cancer cells. Journal of Agricultural and Food Chemistry. 2011 Apr; 59(8):3836–44. https://doi.org/10.1021/jf1049408. PMid:21388137
Lee SH, Nam HJ, Kang HJ, Kwon HW, Lim YC. (−)-Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. European Journal of Cancer. 2013 Oct; 49(15):3210–8. https://doi.org/10.1016/j.ejca.2013.06.025. PMid:23876835
Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-kappa B in epigallocatechin3-gallate induced apoptosis of LNCaP cells. Oncogene. 2003 Jul; 22(31):4851-9. https://doi.org/10.1038/sj.onc.1206708. PMid:12894226
Masuda M, Suzui M, Lim JT, Deguchi A, Soh JW, Weinstein IB. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. Journal of Experimental Therapeutics and Oncology. 2002 Nov Dec; 2(6):350–9. https://doi.org/10.1046/j.1359-4117.200 2.01062.x. PMid:12440226
Leong H, Mathur PS, Greene GL. Green tea catechins inhibit angiogenesis through suppression of STAT3 activation. Breast Cancer Res Treat. 2009 Oct; 117(3):505–15. https:// doi.org/10.1007/s10549-008-0196-x. PMid:18821062 PM Cid:PMC3664280
Koh YW, Choi EC, Kang SU, Hwang HS, Lee MH, Pyun J, et al. Green tea (-)-epigallocatechin-3-gallate inhibits HGF-induced progression in oral cavity cancer through suppression of HGF/c-Met. The Journal of Nutritional Biochemistry. 2011 Nov; 22(11):1074–83. https://doi.org/10.1016/j.jnutbio.2010.09.005. PMid:21292466
Mohan KV, Gunasekaran P, Varalakshmi E, Hara Y, Nagini S. In vitro evaluation of the anticancer effect of lactoferrin and tea polyphenol combination on oral carcinoma cells. Cell Biology International. 2007 Jun; 31(6):599–608. https:// doi.org/10.1016/j.cellbi.2006.11.034. PMid:17258915
Tao L, Forester SC, Lambert JD. The role of the mitochondrial oxidative stress in the cytotoxic effects of the green tea catechin, (-)-epigallocatechin-3-gallate, in oral cells. Molecular Nutrition & Food Research. 2014 Apr; 58(4):665–76. https://doi.org/10.1002/mnfr.201300427. PMid:24249144
Tao L, Park JY, Lambert JD. Differential prooxidative effects of the green tea polyphenol, (-)-epigallocatechin-3-gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling. Molecular Nutrition & Food Research. 2015 Feb; 59(2):203–11. https://doi.org/10.1002/ mnfr.201400485. PMid:25329972
Tsao AS, Liu D, Martin J, Tang XM, Lee JJ, El-Naggar AK, et al. Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prevention Research (Phila). 2009 Nov; 2(11) :931–41. https://doi.org/10.1158/1940-6207.CAPR-09-0121. PMid:19892663 PMCid:PMC4243312
Suganuma M, Saha A, Fujiki H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Science. 2011 Feb; 102(2):317–23. https://doi.org/10.1111/j.1349-7006.2010.01805.x. PMid:2 1199169
Fujiki H, Sueoka E, Watanabe T, Suganuma M. Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds. Journal of Cancer Research and Clinical Oncology. 2015 Sep; 141(9):1511–22. https://doi.org/10.1007/s00432-014-1899-5. PMid:25544670