Relaxant and Antispasmodic Activities of Aqueous Extract from Thymus algeriensis Boiss. and Reut.

Jump To References Section

Authors

  • Laboratory of Bioressources, Biotechnologies, Ethnopharmacologie et Santé, Faculty of Sciences, Mohamed the First University, PB 717, 60000, Oujda ,MA ORCID logo http://orcid.org/0000-0002-3006-2523
  • Laboratory of Bioressources, Biotechnologies, Ethnopharmacologie et Santé, Faculty of Sciences, Mohamed the First University, PB 717, 60000, Oujda ,MA
  • Laboratory of Bioressources, Biotechnologies, Ethnopharmacologie et Santé, Faculty of Sciences, Mohamed the First University, PB 717, 60000, Oujda ,MA
  • Laboratory of Bioressources, Biotechnologies, Ethnopharmacologie et Santé, Faculty of Sciences, Mohamed the First University, PB 717, 60000, Oujda ,MA
  • Laboratory of Bioressources, Biotechnologies, Ethnopharmacologie et Santé, Faculty of Sciences, Mohamed the First University, PB 717, 60000, Oujda ,MA
  • Laboratory of Bioressources, Biotechnologies, Ethnopharmacologie et Santé, Faculty of Sciences, Mohamed the First University, PB 717, 60000, Oujda ,MA
  • Laboratory of Bioressources, Biotechnologies, Ethnopharmacologie et Santé, Faculty of Sciences, Mohamed the First University, PB 717, 60000, Oujda ,MA

DOI:

https://doi.org/10.18311/jnr/2021/24752

Keywords:

Antispasmodic, Jejunum, Relaxant, Smooth muscle, Thymus algeriensis

Abstract

Thymus algeriensis have been vastly utilized for intestinal disorders. The purpose of this investigation was to scrutinize the probable mechanism for its utilization in the spasm disorder. Aqueous extract of this medicinal plant (AqTA) was tested in vitro on rat and rabbit jejunum. The extract produced relaxation of rabbit jejunum. This relaxation does not depend on the adrenergic pathway, the AqTA induces inhibition irrespective of the presence or absence of adrenergic inhibitors. AqTA engendered a concentration-dependent (0.1-5 mg/ml) relaxation of carbamylcholine chloride (CCh) and K+ provoked tones in rat intestine with IC50 values of 2.06 ± 0.26 and 3.55 ± 0.48 (mg/ml) respectively. This extract likewise induced a dosedependent (0.1-3 mg/ml) rightward shift in the CCh and Ca++ dose-response curves. The AqTA alone has decreased more significantly the percentage of contraction of rat jejunum than the AqTA pre-incubated with atropine or hexamethonium then contracted with KCl; but there is no significant difference by those pre-incubated with methylene blue or L-NAME. When the intestine was pretreated with nifedipine and contracted by CCh, the antispasmodic effect provoked by AqTA with and without pre-incubation with nifedipine is statistically not significant. In conclusion AqTA acts possibly on the voltage dependent Ca++ channel and cholinergic receptors but did not act on adrenergic receptors, NO and guanylatecyclase pathway. This investigation may explicate some of its traditional utilization in gut illnesses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2021-04-17

How to Cite

Beyi, L., Zrouri, H., Makrane, H., Mekhfi, H., Ziyyat, A., Bnouham, M., & Aziz, M. (2021). Relaxant and Antispasmodic Activities of Aqueous Extract from <i>Thymus algeriensis</i> Boiss. and Reut. Journal of Natural Remedies, 21(2), 165–171. https://doi.org/10.18311/jnr/2021/24752

Issue

Section

Short Communication
Received 2020-01-08
Accepted 2020-12-15
Published 2021-04-17

 

References

Benabid A. Flore et écosystèmes du Maroc. í‰valuation et préservation de la biodiversité. Paris : í‰dition Ibis Press; 2000. p. 159–61.

Guesmia F, Saidib I, Bouzennab H, Hfaiedhb N, Landoulsi A. Phytocompound variability, antioxidant and antibacterial activities, anatomical features of glandular and aglandular hairs of Thymus hirtus Willd. Ssp. algeriensis Boiss. and Reut. over developmental stages. South African Journal of Botany. 2019; 127:234–43. https://doi.org/10.1016/j. sajb.2019.09.004

Ziani BEC, Heleno SA, Bachari K, Dias MI, Alves MJ, Barros L, Ferreira I CFR. Phenolic compounds characterization by LC-DAD-ESI/MSn and bioactive properties of Thymus algeriensis Boiss. and Reut. and Ephedra alata Decne. Food Res Int. 2019; 116:312–19. https://doi.org/10.1016/j.foodres.2018.08.041. PMid: 30716951

Ali IBE, Guetat A, Boussaid M. Chemical and genetic variability of Thymus algeriensis Boiss. and Reut. (Lamiaceae), a North African endemic species. Ind Crop Prod. 2012; 40(1):277–84. https://doi. org/10.1016/j.indcrop.2012.03.021

Bellakhdar J. La pharmacopée marocaine tradition nelle. Médecine arabe ancienne et savoirs populaires. Ibisspress; 1997. p. 349.

Giweli AA, Džamić AM, Soković MD, Ristić MS, Marin PD. Chemical composition, antioxidant and antimicrobial activities of essential oil of Thymus algeriensis wild-growing in Libya. Cent Eur J Biol. 2013; 8(5):504–11. https://doi.org/10.2478/s11535- 013-0150-0

Guesmi F, Ben FM, Mejri M, Landoulsi A. In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts and essential oil of Thymus hirtus sp. algeriensis. Lipids Health Dis. 2014; 13:114–25. https://doi.org/10.1186/1476-511X-13-138. PMid:251 59191 PMCid:PMC4176582

Guesmi F, Ali MB, Barkaoui T, Tahri W, Mejri M, Ben-Attia M, et al. Effects of Thymus hirtus sp. Algeriensis Boiss. & Reut. (Lamiaceae) essential oil on healing gastric ulcers according to sex. Lipids Health Dis. 2014; 13:138–50. https://doi.org/10.1186/1476- 511X-13-138. PMid:25159191. PMCid:PMC4176582

Nikolić M, Glamoćlija J, Ferreira ICFR, Calhelha RC, Fernandes, Marković T, Marković D, Giweli A, Soković M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind Crops Prod. 2014 Jan; 52:183–90. https://doi.org/10.1016/j.indcrop.2013.10.006

Beyi L, Aziz M, Makrane H, Karim A, Bnouham M, Ziyyat A. Antidiarrhoeal activity of Thymus algeriensis boiss. & reut. aqueous extract on rats and mice. Int J Pharm Pharm Sci. 2015; 7(3):292–4.

Makrane H, Aziz M, Mekhfi H, Ziyyat A, Bnouham M, Legssyer A, Gressier B, Eto B. Antispasmodic and Myorelaxant Activity of Organic Fractions from Origanum majorana L. on Intestinal Smooth Muscle of Rodents. Eur J Med Plant. 2018; 23(2):1–11. https:// doi.org/10.9734/EJMP/2018/41075

Makrane H, El messaoudi M, Melhaoui A, El mzibri M, Benbacer L, Aziz M. 2018a. Cytotoxicity of the aqueous extract and organic fractions from Origanum majorana on human breast cell lines MDA-MB-231 and human colon cell lines HT-29. Adv Pharmacol Sci. https://doi. org/10.1155/2018/3297193. PMid:30210537. PMCid: PMC6126111

Weisbrodt NW. Regulation: Nerves and smooth muscle. In: Gastrointestinal Physiology, Johnson LR (ed.). Philadelphia, PA:Mosby Elsevier; 2007. p. 13–21. https://doi.org/10.1016/B978-0-323-03391-6.50006-6

McHale N, Hollywood M, Sergeant G, Thornbury K. Origin of spontaneous rhythmicity in smooth muscle. J Physiol. 2006; 570:23–8. https://doi.org/10.1113/ jphysiol.2005.098376. PMid:16239271. PMCid:PMC1 464298

Hansen MB. The enteric nervous system II: Gastrointestinal functions. Pharmacol Toxicol. 2003; 92:249–57. https://doi.org/10.1034/j.1600-0773.2003. 920601.x. PMid:12787256

Aziz M, Tab N, Karim A, Mekhfi H, Bnouham M, Ziyyat A, et al. Relaxant effect of aqueous extract of Cistusladaniferus on rodent intestinal contractions. Fitoterapia. 2006; 77:425–8. https://doi.org/10.1016/j. fitote.2006.05.015. PMid:16815641

Gilani AH, Khan A, Ghayur MN, Ali SF and Herzig J. Antispasmodic Effects of Rooibos Tea (Aspalathu slinearis) is Mediated Predominantly through K+ -channel Activation. Basic Clin Pharmacol Toxicol. 2006; 99:365–73. https://doi.org/10.1111/j.1742-7843.2006. pto_507.x. PMid:17076689

Makrane H, Aziz M, Berrabah M, Mekhfi H, Ziyyat A, Bnouham M, et al. Myorelaxant Activity of essential oil from Origanum majorana L. on rat and rabbit. J Ethnopharmacol. 2019; 228:40–9. https://doi. org/10.1016/j.jep.2018.08.036. PMid:30205180

Bolton TB. Mechanism of action of transmitters and other substances on smooth muscles. Physiol Rev. 1979; 59:606–718. https://doi.org/10.1152/physrev.19 79.59.3.606. PMid:37533

Godfraind T, Miller R, Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986:321 –416.

Rojas A, Bah M, Rojas JI, Serrano V, Pacheco S. Spasmolytic activity of some plants used by the Otomi Indians of Querétaro (México) for the treatment of gastrointestinal disorders. Phytomedicine. 1999; 6:367–71. https://doi.org/10.1016/S0944-7113(99)80061-0

Hardman JG, Umbird LE, Gliman AG, Goodman G. The pharmacological basis of therapeutics. 10th ed McGraw Hill, New York; 2001.

Guata YS, Sarr A, MoctarDièye A, Faye B. Myorelaxant and antispasmodique effects of the aqueous extract of Mitragyna inermis barks on Wistar rat ileum. Fitoterapia. 2004:447–50. https://doi.org/10.1016/j. fitote.2004.03.006. PMid:15261381

Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Br J Pharmacol Chemotherapy. 1959; 14:48–58. https://doi.org/10.1111/j.1476-5381.1959. tb00928.x. PMid:13651579. PMCid:PMC1481829

Gilani AH, Shaheen F, Christopoulos A, Mitchelson F. Interaction of ebeinone, an alkaloid from Fritillaria imperialis, at two muscarinic acetylcholine receptor subtypes. Life Sci. 1997; 60(8):535–44. https://doi. org/10.1016/S0024-3205(96)00691-1

Barlow RB, Franks M, Pearson JDM. A comparison of the affinities of antagonists for acetylcholine receptors in the ileum, bronchial muscle and iris of the guineapig. British Journal of Pharmacology. 1972:300–8. https://doi.org/10.1111/j.1476-5381.1972.tb06875.x. PMid:4405611. PMCid:PMC1666339

Spencer NJ, Walsh M, Smith TK. Purinergic and cholinergic neuroneuronal transmission underlying reflexes activated by mucosal stimulation in the isolated guinea pig ileum. J Physiol. 2000:321–31. https://doi.org/10.1111/j.1469-7793.2000.t01-1- 00321.x. PMid:10639107. PMCid:PMC2269751

Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990; 24, 345(6273):346–7. https://doi.org/10.1038/345346a0. PMid:1971425

Gustafsson BI, Delbro DS. Tonic inhibition of small intestinal motility by nitric oxide. J Autonom Nerv Syst. 1993; 44:179–87. https://doi.org/10.1016/0165- 1838(93)90030-X

Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acethylcholine. Nature. 1980; 288:373–6. https://doi.org/10.1038/288373a0. PMid:6253831

Wollin MS, Wood KS, Igharro LJ. Guanylatecyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme and nitrosylheme. J Biol Chem. 1982; 257:13312–20. https://doi.org/10.1016/S0021-9258(18)33448-3

Komaitis ME. Composition of the essential oil of marjoram (Origanum majorana L.). Food Chem. 1992; 45:117–18. https://doi.org/10.1016/0308-8146(92)90 020-3

Lemmens-Gruber R, Marchart E, Rawnduzi P, Engel N, Benedek B, Kopp B. Investigation of the spasmolytic activity of the flavonoid fraction of Achillea millefoliums L. on isolated guinea-pig ilea. Arzneimittel-Forschung/Drug Research. 2006; 56(8):582–6. https://doi.org/10.1055/s-0031-1296755. PMid:17009839

Gorzalczany S, Moscatelli V, Ferraro G. Artemisia copa aqueous extract as vasorelaxant and hypotensive agent. J Ethnopharmacol. 2013; 148(1):56–61. https:// doi.org/10.1016/j.jep.2013.03.061. PMid:23588093

Fleer H, Verspohl J. Antispasmodic activity of an extract from Plantago lanceolata L. and some isolated compounds. Phytomedicine. 2007; 14(6):409–15. https://doi.org/10.1016/j.phymed.2006.05.006. PMid:17298877

Engelbertz J, Lechtenberg M, Studt L, Hensel A, Verspohl EJ. Bioassay-guided fractionation of a thymol-deprived hydrophilic thyme extract and its antispasmodic effect, J Ethnopharmacol. 2012; 141(3) :848–53. https://doi.org/10.1016/j.jep.2012.03.025. PMid:22465593

Lozoya X, Meckes M, Abou-Zaid M, Tortoriello J, Nozzolillo C, Arnason JT. Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch Med Res. 1994; 25(1):11–15.

Melzig MF, Pertz HH, Krenn L. Anti-inflammatory and spasmolytic activity of extracts from Droserae Herba, Phytomedicine. 2001; 8(3):225–9. https://doi. org/10.1078/0944-7113-00031. PMid:11417917

Krenn L, Beyer G, Pertz HH, Karall E, Kremser M, Galambosi B, et al. In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia. Arzneimittel-Forschung/Drug Research. 2004; 54(7):402–5. https://doi.org/10.1055/s-0031-1296991. PMid:15344845

Most read articles by the same author(s)