A Perspective Review on Siddha System of Medicine in the Management of Corona Virus Disease 2019
DOI:
https://doi.org/10.18311/jnr/2021/25876Keywords:
Antiviral Drug, Immuno-modulator, Influenza, Respiratory Tract Infection, Siddha Medicine, COVID-19Abstract
Respiratory Tract Infections (RTIs) are the most common, and potentially most severe, of infections treated by health care practitioners. Lower RTIs along with influenza, are the most common cause of death by infection. The fatality risk is doubled if the person is with other morbid conditions or in extremes of age. These seasonal respiratory infections caused by viruses are of more concern as their spread is very vast than we imagine. COVID-19 (corona virus disease 2019) is such a pandemic respiratory illness caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), a strain of Corona virus. The emerging anti-microbial resistance and easy spread of respiratory pathogens has also increased the challenge for appropriate management of RTI like COVID-19. Drugs with anti-viral property and potency to prevent the comorbidity stand are the need of the hour. This review article includes information on preclinical studies and clinical studies to add a scientific validation to formulations that are commonly used in Siddha system of Medicine. The ingredients of the Siddha drugs possessing anti-viral property and immune-modulatory effect particularly against respiratory pathogens are elaborated. Evidence of anti-viral property has been made out to the light for further clinical trials.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2021-02-10
Published 2021-04-17
References
World Health Organization. Country & Technical Guidance - Coronavirus disease (COVID-19). Naming the coronavirus disease (COVID-19) and the virus that causes it [Online]. [cited 2020 Apr 04]. Available from: https://www.who.int/emergencies/ diseases/novel-coronavirus-2019/technicalguidance/ naming-the-coronavirus-disease-(covid- 2019)-and-the-virus-that-causes-it.
Guan W, Ni Z, Hu Y, Liang W, Chun-quanOu, He J, et al., For the China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Corona virus Disease 2019 in China. NEJM. https://doi.org/10.1056/ NEJMoa2002032. PMid:32109013. PMCid:PMC7092819
World Health Organization. Pneumonia of unknown cause - China. Disease outbreak news [Online]. 2020 5 Jan [cited 2020 Apr 04]. Available from: https:// www.who.int/csr/don/05-january-2020-pneumoniaof- unkown-cause-china/en/.
World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID- 19. 2020 Mar 11 [cited 2020 Apr 04]. Available from: https://www.who.int/dg/speeches/detail/whodirector- general-s-opening-remarks-at-the-mediabriefing- on-covid-19---11-march-2020.
World Health Organization. Emergency use ICD codes for COVID-19 disease outbreak[Online]. [cited 2020 Apr 04].Available from: https://www.who.int/ classifications/icd/covid19/en/.
ICMR National Institute of Epidemiology, Chennai [Online]. [cited 2020 Mar 29]. Available from: http:// covidindiaupdates.in/.
Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Corona virus Disease 2019 in China. N Engl J Med. 2020.
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of Novel Corona virus-Infected Pneumonia. N Engl J Med. 2020.
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of corona virus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. annals of internal medicine. 2020. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. World Health Organization; 2020.
Meshram GG, Kumar A, Rizvi W. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of Albizzia lebbeck in rats. J Tradit Complement Med. 2016; 6(2):172–5. https://doi.org/10.1016/j.jtcme.2014.11.038. PMid:27114941. PMCid:PMC4833457
Alleva LM, Charles C, Clark IA. Using complementary and alternative medicines to target the host response during severe influenza. Evid Based Complement Alternat Med. 2010; 7(4):501–10. https://doi.org/10.1 093/ecam/nep152. PMid:19779008. PMCid:PMC289 2358
Shanmughavelu, HPIM., Noinaadal Noi mudhal naadalthirattu Part 1, First Edition, Published by Directorate of Indian Medicine and Homeopathy, Chennai.
Annonymous. YugiVaithya Chinthamani-800, 2nd edition, Chennai. Directorate of Indian Medicine and Homeopathy, Govt of Tamilnadu; 2005.
Boateng W. Evaluating the efficacy of Focus Group Discussion (FGD) in qualitative social research. Int J Bus Manag Soc. Res. 2012Apr; 1-3(7).
World Health Organization. Clinical management of Severe Acute Respiratory Infection (SARI) when COVID-19 disease is suspected: interim guidance. World Health Organization. 2000 13 Mar. https://doi. org/10.15557/PiMR.2020.0003
Mudhaliyar KNK, HPIM , Uthamarayan KS. Siddha VaithyaThiratu, Directorate of Indian Medicine and Homeopathy, Chennai -106. 61-294.
Kavinilavan R, Mekala P, Raja MJ, Arthanari Eswaran M, Thirumalaisamy G. Exploration of immunomodulatory effect of nilavembu kudineer chooranam against newcastle disease virus in backyard chicken. J Pharmacogn Phytochem. 2017; 6(6):749–51.
Kavinilavan R, Mekala P, Raja MJ, Eswaran Ma. Immunomodulatory effect of nilavembu kudineer chooranam in backyard chicken (Doctoral Dissertation, Tanuvas, Chennai).
Anbarasu K, Manisenthil KK, Ramachandran S. Anti pyretic, anti-inflammatory and analgesic properties of Nilavembu kudineer choornam: A classical prepar ation used in the treatment of chikungunya fever. Asian Pac J Trop Med. 2011 Oct 1; 4(10):819–23. https://doi.org/10.1016/S1995-7645(11)60201-0
Walter TM, et.al. Effect of Nilavembu kudineer in the prevention and management of COVID - 19 by inhibiting ACE2 Receptor: Siddha Papers. 2020; 15(2).
Tang Li, Ling Apk, Kohry, Chyesm, Voonkgl. Screening of anti- dengue activity in methanolic extracts of medicinal plants. BMC Compl Alternative Med. 2012, 1–1012. https://doi.org/10.1186/1472- 6882-12-3. PMid:22244370. PMCid:PMC3269354
Chang RS, Yeung HW. Inhibition of growth of human immunodeficiency virus in vitro by crude extracts of Chinese medicinal herbs. Antivir Res. 1988; 9:163– 75. https://doi.org/10.1016/0166-3542(88)90001-0
Otake T, Mori H, Morimoto M, et al. Screening of Indonesian plants for anti-human immunodeficiency virus type 1 (hiv-1) activity. Phytother Res. 1995, 9: 6-10. https://doi.org/10.1002/ptr.2650090103
Yao X, Wainberg MA, Parniak MA. Mechanism of inhibition of HIV-1 infection in vitro by purified extract of Prunella vulgaris. Virology. 1992; 187:56– 62. https://doi.org/10.1016/0042-6822(92)90294-Y
Ma X, Rininger J, Chigurupati P, Dong H, Babish JG. Biochemical pathways of inhibiting human immunodeficiency virus-1 replication and cytopathicity by andrographolide. Gen Meet Am Soc Microbiol. 1997:538.
Cohen D, Wahl L, Sharpe S, Batner G. Induction of cellular kinase C-MOS by infection of peripheral blood lymphocytes with primary HIV-1: Association with viral propagation and cell death. Int Conf AIDS. 1996:11.
Thillaivanan S, et al. A review on "Kapa Sura Kudineer"-A siddha formulary prediction for swine flu. Int J Pharmaceut Sci Drug Res. 2015; 7(5):376–83.
Saravanan J, Devasia N, Gopalasatheeskumar K, Devan VS, Kokila KT, Sanjay M. Anti-inflammatory, antipyretic and antibacterial study of Kaba sura kudineer choornam. Int J Curr Adv Res. 2018; 7(2):9992–7.
Panara, et al. Review on research studies of vasapatra (leaf of Adhatoda vasica leaves). Int J Pharmacogn Phytochem Res. 2014; 1(3).
George M, Venkataraman PR, Pandalai KM. Investigations on plants antibiotics. Part II. A search for antibiotic substances in some Indian medicinal plants. Am J Sci Ind Res. 1947; 68:42–6.
Jahan Y, Siddiquihh. Study of antitussive potential of Glycyrrhiza glabra and Adhatoda vasica using a cough model induced by sulphur dioxide gas in mice. Int J Pharmaceut Sci Res. 2012; 3(6):1668–74.
Chavan R, Chowdhary A. In vitro inhibitory activity of Justicia adhatoda extracts against influenza virus infection and hemagglutination. Int J Pharmaceut Sci Rev Res. 2014; 25(2):231–6.
Mudhaliyar KSM, HPIM. Gunapadam Mooligai, Directorate of Indian Medicine and Homeopathy, Chennai-106, 13 -861.
Rajamaheswari K, Mursaleen B, Vijai M, Jamyang P, Arunachalam K, Venkateswaran K, et al. In silico analysis of active compounds from Siddha herbal infusion of Ammaiyar Koondhal Kudineer (AKK) against SARS-CoV-2 Spike Protein and its ACE2 Receptor Complex .
Motamedifar.The effect of cumin seed extracts against herpes simplex virus type 1 in vitro cell culture. Iran J Basic Med Sci. 35(4):304–9.
Kazemioskuee R. Chemical composition, antimi crobial activity and antiviral activity of essential oil of Carum copticum. Iran Journal of Phytomedicine. 2011 Sep; 1(2),83–90.
Boskabady MH, Rakhshandah H, Moetamedshariati V. Bronchodilatory and anticholinergic effects of Carum copticum on isolated guinea pig tracheal chains.Med J Islam Repub Iran. 1998; 11:329–34.
Boskabady MH, Ramazani M, Tabei T. Relaxant effects of different fractions of essential oil from Carum copticum on guinea pig tracheal chains.Phytother Res. 2003; 17(10):1145–9. https://doi.org/10.1002/ptr. 1238. PMid:14669246
Boskabadyand MH, Shaikhi J. Inhibitory effect of Carum copticum on histamine (h1) receptors of isolated guinea-pig tracheal chains.J Ethnopharmacol. 2000; 69(3):217–27. https://doi.org/10.1016/S0378- 8741(99)00116-6
Boskabady MH, Alizadeh M, Jahanbin B. Bronchodilatory effect of Carum copticum in airways of asthmatic patients. Therapie. 2007 Jan 1;62(1):23– 9. https://doi.org/10.2515/therapie:2007007. PMid:17 374344
Boskabadyand MH, Jandaghi P. Relaxant effects of carvacrol on guinea pig tracheal chains and its possible mechanisms.Pharmazie. 2003; 58(9):661–3.
Forouzanfar F. Black cumin (nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects.Iran J Basic Med Sci. 2014 Dec; 17(12):929–38.
Barakat EMF, El Wakeel LM, Hagag RS. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J Gastroenterol. 2013; 19:2529–36. https:// doi.org/10.3748/wjg.v19.i16.2529. PMid:23674855. PMCid:PMC3646144
Mair. Antiviral and anti-proliferative in vitro activities of piperamides from black pepper. Planta Med. 2016; 82(s 01):S1–381. https://doi. org/10.1055/s-0036-1596830
Goncalves JL, Lopes RC, Oliveiradb, Costa SS, Miranda MM, Romanos MT, et al. In vitro antirota virus activity of some medicinal plants used in brazil against diarrhea. J Ethnopharmacol. 2005; 99:403. https://doi.org/10.1016/j.jep.2005.01.032. PMid:1587 6501
Parhira S, Yang ZF, Zhu GY, Chen QL, Zhou BX, et al. In vitro anti-influenza virus activities of a new lignan glycoside from the latex of Calotropis gigantean. Plos One. 2014; 9(8):1–13. https://doi. org/10.1371/journal.pone.0104544. PMid:25102000. PMCid:PMC4125211
Baloglu E, Kingstone DG. The taxane diterpenoids. J Nat Pro. 1999; 62:1448–72. https://doi.org/10.1021/ np990176i. PMid:10543916
Parmar VS, Jha A, Bisht KS, Taneja P, Singh SK, Kumar A, et al. Constituents of yew trees. Phyto chemistry. 1999; 50:1267–304. https://doi.org/10.10 16/S0031-9422(98)00702-X
Steinhilber D. A target for anti-inflammatory drugs revisited. Curr Med Chem. 1999; 6:71–85.
Patel KV, Gandhi TR. Evaluation of effect of Taxus baccata leaves extract on broncho constriction and bronchial hyper reactivity in experimental animals. Global J Pharmacol. 2009; 3(3):141–8.
Rios JL, Giner RM, Prieto JM. New findings on the bioactivity of lignans. Stud Nat Prod Chem. 2002; 206(Part G):183–292. https://doi.org/10.1016/S1572- 5995(02)80008-4
Cho JY, Park J, Kim PS, Yoo ES, Baik KU, Park MH. Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-alpha production and T cell proliferation. Biol Pharm Bull. 2001; 24:167–71. https://doi.org/10.1248/bpb.24.167. PMid:11217086
Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol. 1999; 58:759–65. https://doi.org/10.1016/ S0006-2952(99)00160-4
Srinivas KV, Rao YK, Mahender I, Das B, Krishna KV, Kishore KH. Flavonoids from Caesalpinia pulcherrima. Phytochemistry. 2003; 63:789–93. https://doi.org/10.1016/S0031-9422(03)00325-X
Matsuda H, Morikawa T, Ando S, Toguchida I, Yoshikawa M. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg Med Chem. 2003; 11:19 95–2000. https://doi.org/10.1016/S0968-0896(03)000 67-1
Shyam H, Laksmikantham T, Mohan S, Meenakumari R. RAN therapy in tandem with Anti-Retroviral treatment (ART)-A case series study on HIV positive patients visiting Ayothidoss Pandithar Hospital, National Institute of Siddha, Chennai. J Biomed Sci. 2020 Feb 22;3(1):20–7.
Kambizi l, Goosenbm, Taylor MB, Afolayanaj. Antiviral effects of aqueous extracts of Aloe ferox and with aniasomnifera on herpes simplex virus type 1 in cell culture. S Afr J Sci. 2007; 103:359–60.
O'hara M, Kiefer D, Farrell K, Kemper K. A review of 12 commonly used medicinal herbs, arch. Fam Med. 1998; 7:523–36.https://doi.org/10.1001/ archfami.7.6.523. PMid:9821826
Usha PR, Naidu MU, Raju YS. Evaluation of the antiretroviral activity of a new polyherbal drug (Immu- 25) in patients with HIV infection. Drug Dev. Res. 2003; 4(2):103–10. https://doi.org/10.2165/00126839- 200304020-00003. PMid:12718564
Denyer CV, Jackson P, Loakes DM, Ellis MR, Young DA. Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale).J Nat Prod. 1994; 57:658– 62. https://doi.org/10.1021/np50107a017. PMid:8064 299
Nagai K. Experimental studies on the preventive effect of garlic extract against infection with influenza virus. Jpn J Infect Dis. 1973; 47:321. https://doi. org/10.11150/kansenshogakuzasshi1970.47.321. PMid:4202430
Chang JS, Wang KC, Yeh CF, Shieh DE and Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013; 145(1):146–51. https://doi.org/10.1016/j.jep.2012.10.043. PMid:23123794
Sankaranarayanan S. Medical taxanomy of angiosperms - Recent trends in Medical uses and Chemical constituents, 1st edition, Harishi publications; 2009 Oct.
Joshi G, et al. Assessment of in vitro antiviral activity of Ocimum sanctum (Tulsi) against pandemic swine flu H1N1 virus infection. World Res J Antimicrob Agents. 062-067.
Ghoke et al. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Compl Alternative Med. 2018; 18:174. https:// doi.org/10.1186/s12906-018-2238-1. PMid:29866088. PMCid:PMC5987647
Krishnara R, et al. Antioxidant assay and GC-MS analysis of one Siddha medicine swasakudori tablets. Int J Pharmaceut Sci Rev Res. 2016; 37(10, Mar- Apr):19–25,37.
Vlietinckaj, Van HL, Totté J, Lasure A, Vanden BD, Rwangabo PC, Mvukiyumwami J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol. 1995; 46:31– 47. https://doi.org/10.1016/0378-8741(95)01226-4
Madhusudanarao J, et al. Us patent publication no: us2004/0081711a1 and wo 2004/041295 a1: 2004.
Umar S, et al. Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. J Saudi Soc Agric Sci. 2016. https://doi. org/10.1016/j.jssas.2016.09.004
Lee SH, et al. Effects of cocktail of four local Malaysian medicinal plants (Phyllanthus spp.) against dengue virus 2.BMC Compl Alternative Med.
Wei W, et al. Lignans with antihepatitis B virus activities from Phyllanthus niruri L. Phytother Res. 2012; 26:964– 8. https://doi.org/10.1002/ptr.3663. PMid:22131154
Murugaiyah V, Chan KL. Analysis of lignans from Phyllanthus niruri L. in plasma using a simple HPLC method with fluorescence detection and its application in a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2007; 852:138–44. https://doi. org/10.1016/j.jchromb.2007.01.014. PMid:17261384
Nathanael YS, Lee et al. Pharmacology of P. niruri Royal Pharmaceutical Society. J. Pharm. Pharmacol. 2016; 68(2016):953–69. https://doi.org/10.1111/jphp. 12565. PMid:27283048
Ogata T, et al. HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. AIDS Res Hum Retro viruses. 1992; 8:1937–44. https://doi.org/10.1089/ aid.1992.8.1937. PMid:1283310
Naik AD, Juvekar AR. Effects of alkaloidal extract of Phyllanthus niruri on HIV replication. Indian J Med Sci. 2003; 57:387–93. https://doi.org/10.1007/978-1- 59259-365-1_22. PMid:14536079
Qian-Cutrone J, et al. Niruriside, A new HIV REV/ RRE binding inhibitor from Phyllanthus niruri. J Nat Prod. 1996; 59:196–99. https://doi.org/10.1021/ np9600560. PMid:8991954
Lee SH, et al. Effects of cocktail of four local Malaysian medicinal plants (Phyllanthus spp.) against dengue virus 2. BMC Complement Alter Med. 2013; 13:192. 82 . Suresh U et al. Phyllanthus niruri mediated synthesis of silver nano particles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitology Research. 2015; 114: 1551-1562. https://doi.org/10.1007/s00436-015- 4339-9 PMid:25669140
Fiore C, et al. Antiviral effects of Glycyrrhiza species. Phytother Res. 2008; 22(2):141–8. https://doi.org/10. 1002/ptr.2295. PMid:17886224. PMCid:PMC7167979
Pompei R, flore O, marccialis MA, Pani A, Loddo B. Glycyrrhizicacid inhibits virus growth and inactivates virus particles. Nature. 1979; 281(5733):689–90. https://doi.org/10.1038/281689a0. PMid:233133
Pompei R, Paghi L, Ingianni A, Uccheddu P. Glycyrrhizicacid inhibits influenza virus growth in embryonated eggs. Microbiologica. 1983; 6(3):247– 50.
Utsunomiya T, Kobayashi M, Pollard RB, Suzuki F. Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob Agents Chemother. 1997; 41(3):551–6. https://doi. org/10.1128/AAC.41.3.551. PMid:9055991
Lampi G, Deidda D, Pinza M, Pompei R. Enhancement of antiherpetic activity of glycyrrhizic acid by physiological proteins. Antivir Chem Chemother. 2001; 12(2):125–31. https://doi.org/10.1177/0956320 20101200206. PMid:11527044
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerrhw. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated corona virus. Lancet. 2003;361(9374):2045–6. https:// doi.org/10.1016/S0140-6736(03)13615-X
Crancejm, Scaramozzino N, Jouan A, Garin D. Interferon, ribavirin, 6-azauridine and glycyrrhizin: Antiviral compounds active against pathogenic Flavivirus. Antivir Res. 2003; 58(1):73–9. https://doi. org/10.1016/S0166-3542(02)00185-7
Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltinal, Tolstikovga, et al. Antiviral activity of glycyrrhizic acid derivatives against SARScoronavirus. J Med Chem. 2005;48(4):1256–9. https:// doi.org/10.1021/jm0493008. PMid:15715493
Takei M, Kobayashi M, Li XD, Pollard RB, Suzuki F. Glycyrrhizin inhibits r5 HIV replication in peripheral blood monocytes treated with 1-methyladenosine. Pathobiology. 2005; 72(3):117–23. https://doi.org/10.1 159/000084114. PMid:15860928
Wang ZY, Athar M, Bickers DR. Licorice in Foods and Herbal Drugs: Chemistry. Pharmacology, Toxicology and Uses. Herbs, Botanicals & Teas. 321–53. 88. Rechinger KH. Papilionaceae II.In: Rechingerkh (ed). Flora Iranica no. 157, akademischedruck-u. Verlagsanstalt, gratz; 1984. p. 164.
Badam L. In vitro antiviral activity of indigenous glycyrrhizin, licorice and glycyrrhizic acid (sigma) on Japanese encephalitis virus. J Commun Dis. 1997; 29:91–9.
Knipping et al. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J. 2012, 9:137. https://doi.org/10.1186/1743- 422X-9-137. PMid:22834653. PMCid:PMC3439294
Taro N, Toshio F, Toshiyuki A. Chemistry of phenolic compounds of licorice & their estrogenic and cytotoxic activities. Journal of Pure and Applied Chemistry. 2002; 74:1199–206. https://doi.org/10.1351/pac20027 4071199
De Simon F, Aquino R, De Tommasi N, Mahmood N, Piacente S, Pizza C. Anti-HIV aromatic compounds from higher plants: in Bioactive compounds from natural sources (C. Tringali, ed).
Hatano T, Yasuhara T, Miyamoto K, Okuda T. Antihuman immunodeficiency virus phenolics from licorice. Chem Pharm Bull. 1988; 36:2286–8. https:// doi.org/10.1248/cpb.36.2286. PMid:3240462
Ko HC, Wei BL. Chiouwf, the effect of medicinal plants used in Chinese folk medicine on rantes secretion by virus-infected human epithelial
Mehrbod P, Amini E, Tavassoti-Kheiri M. Antiviral activity of garlic extract on influenza virus. Iran J Virol. 2009; 3(1):19–23. https://doi.org/10.21859/ isv.3.1.19
Parthiban, Kanagavalli K, Rajeswaran PS, Anbu J, Parthiban NT. Evaluation of anti-histaminic and bronchodilator activity of Linga Mathirai (Formal Siddha Drug).Int. J Pharm Sci Rev Res. 2013 May; 2(5):8–12.
Tsai Y, Cole LL, Davis LE, Lockwood SJ, Simmons V, Wild GC. Planta Med. 1985; 51, 460. https://doi. org/10.1055/s-2007-969553. PMid:17342616
Nagai K. Kansensh Ogaku Zasshi. 1973; 47:111. https:// doi.org/10.11150/kansenshogakuzasshi1970.47.111. PMid:4354295
Gunatika et al.Studies on medicinal plants of Srilanka. Used in the treatment of asthmatic bronchitis and nasal congestion. Plant Medica39: 66-72.Balbach.A(1978) A Flora Medcinalna Medicina Domestica, 2, MVP, Itaquaquecetuba.pp.703.
Wadhwani A, Devidas, Vijayan P. Investigation of antiviral properties of medicinal plant extracts, Pharmaceutical Biotechnology College: JSS College of Pharmacy, Ootacamund University: JSS University, Mysore.
Chetan B, Nakum A. Use of natural compounds, chitin and tinosporin for the treatment of the targeted viruses (retroviruses) (HIV-1, HIV-2) all subgroups, HTLV and other viral disease. Indian patent Application. 2010.
Anuya, Aparna, Anil, Rege. Evaluation of Ocimum sanctum and Tinospora cordifolia as probable HIVprotease inhibitors.Int J Pharm Sci Rev Res. 2014 Mar-Apr; 25(1):315–18.
Anuya. A regein-vitro testing of anti-HIV activity of some medicinal plants.Indian J Nat Prod Resour. 2010 Jun; 1(2):193–9.
Pruthvish R, Gopinath SM. Antiviral prospective of Tinospora cordifolia on HSV1. Int J Curr Microbiol Appl Sci. 2018; 7(01):3617–24. https://doi. org/10.20546/ijcmas.2018.701.425
Ichsyani M, Ridhanya A, Risanti M, Desti H, Ceria R, Putri DH, Sudiro TM, Dewi BE. Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo. IOP Conf. Series: Earth and Environmental Science.2017; 101. https://doi.org/10.1088/1755-1315/101/1/012005
Mazumder A. Inhibition of human immunodefici ency virus type-l integrase by curcumin.Bio chem Pharmacol. 1995; 49(8):1165–70. https://doi. org/10.1016/0006-2952(95)98514-A
Dao TT, et al. Curcuminoids from Curcuma longa and their inhibitory activities on influenza aeuraminidases. Food Chem. 2012; 134:21–8. https:// doi.org/10.1016/j.foodchem.2012.02.015
Chen, et al. Curcumin inhibits influenza virus infection and haem-agglutination activity. Food Chem. 2010; 119:1346–51. https://doi.org/10.1016/j. foodchem.2009.09.011
Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K.A review on antibacterial, antiviral, and antifungal activity of curcumin.Biomed Res Int. 2014, 12. https://doi.org/10.1155/2014/186864. PMid:24877064. PMCid:PMC4022204
Ilango K, Maharajan G, Narasimhan S. Antinociceptive and anti-inflammatory activities of Azadirachta indica fruit skin extract and its isolated constituent azadiradione. Nat Prod Res. 2013 Aug 1; 27(16):1463–7. https://doi.org/10.1080/14786419.201 2.717288. PMid:22928548
Ashfaq UA, Jalil A, ul Qamar MT. Antiviral phytochemicals identification from Azadirachta indica leaves against HCV NS3 protease: An in-silico approach. Nat Prod Res. 2016 Aug 17; 30(16):1866–9. https://doi.org/10.1080/14786419.2015.1075527. PMid:26274064
Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J Ethnopharmacol. 2002 Feb 1; 79(2):273–8. https:// doi.org/10.1016/S0378-8741(01)00395-6
Dwivedi VD, Tripathi IP, Mishra SK. In silico evaluation of inhibitory potential of triterpenoids from Azadirachtaindica against therapeutic target of dengue virus, NS2B-NS3 protease.J Vector Borne Dis.2016 Jun; 53:156–61
Battistini R, Rossini I, Ercolini C, Goria M, Callipo MR, Maurella C, et al. Antiviral activity of essential oils against hepatitis A virus in soft fruits. Food Environ Virol. 2019 Mar 15; 11(1):90–5. https://doi. org/10.1007/s12560-019-09367-3. PMid:30684236
Tomotake H, Koga T, Yamato M, Kassu A, Ota F. Antibacterial activity of citrus fruit juices against Vibrio species. J Nutr Sci Vitaminol. 2006; 52(2):157–60. https://doi.org/10.3177/jnsv.52.157. PMid:16802698
Sharma R, Sharma G, Sharma M. Anti-Malassezia furfur activity of essential oils against causal agent of Pityriasis versicolor disease. Afr J Pharm Pharmacol. 2012; 6(13):979–83. https://doi.org/10.5897/AJPP12.097
Hussain KA, Tarakji B, Kandy BP, John J, Mathews J, Ramphul V,et al. Antimicrobial effects of Citrus sinensis peel extracts against periodontopathic bacteria: An in vitro study. Rocz Panstw Zakl Hig. 2015; 66(2):173–8.
Jain J, Kumar A, Narayanan V, Ramaswamy RS, Sathiyarajeswaran P, Devi MS, et al. Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation. J Ayurveda Integr Med. 2019 Jan 23. https:// doi.org/10.1016/j.jaim.2018.05.006. PMid:30685096. PMCid:PMC7527801
Lekha GS, et al. An interventional cohort study in dengue prevalent area by using Nilavembu Kudineer and awareness programme. J Med Dent Sci. 2018; 17(2):19–23.
Karthick S, Arunvanan M, Mubarak H, Antony SJ, Manoharan A, Mohan S. A review on Ethnopharmacological aspects of a Siddha drug Nilavembu kudineer. Am J PharmTech Res. 2013; 3:260–74.
Ali-Seyed M, Vijayaraghavan K. Dengue virus infections and anti-dengue virus activities of Andrographis paniculata. Asian Pac J Trop Med. 2020 Feb 1;13(2):49. https://doi.org/10.4103/1995- 7645.275412
Kalaiarasi R, Gladys RJ, Elangovan S, Soundararajan DK, Mubarak H, Kanakarajan A. A combination of Nilavembu kudineer and adathodaimanapagu in the management of dengue fever. Int J Curr Res. 2013; 5(4):978–81.
Christian GJ, Subramanian M, Periyasami D, Manickavasakam K, Gunasekaran P, Sivasubramanian S, et al. Protective effect of polyherbal siddha formulation-Nilavembu Kudineer against common viral fevers including dengue-a case-control approach. Int J Pharmaceut Sci Res. 2015 Apr 1;6(4):165.
Saravanan J, Devasia N, Gopalasatheeskumar K, Devan VS, Kokila KT, Sanjay M. Anti-inflammatory, antipyretic and antibacterial study of Kabasura kudineerchoornam. Int J Curr Adv Re.. 2018; 7(2):9992–7.
Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, et al. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 2000 Aug; 14(5):333–8. https://doi. org/10.1002/1099-1573(200008)14:5<333::AIDPTR584> 3.0.CO;2-D
Wu MF, Chen ST, Yang AH, Lin WW, Lin YL, Chen NJ, et al. CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood. 2013 Jan 3; 121(1):95–106. https://doi. org/10.1182/blood-2012-05-430090. PMid:23152543
Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman M. Antiviral properties of ent"labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1. Phytother Res. 2005 Dec; 19(12):1069–70. https://doi.org/10.1002/ptr.1765. PMid:16372376
Thayil, Seema M. A flavonoid extracted from plectranthus amboinicus inhibits HIV- 1 protease.Int J Pharmacogn Phytochem Res. 2016; 8(6):1020–4.
Goncalves TB, Braga MA, de Oliveira FF, Santiago GM, Carvalho CB, e Cabral PB, et al. Effect of subinihibitory and inhibitory concentrations of Plectranthus amboinicus (Lour.) Spreng essential oil on Klebsiella pneumoniae. Phytomedicine. 2012 Aug 15; 19(11):962–8. https://doi.org/10.1016/j. phymed.2012.05.013. PMid:22776104
Benencia F, Courreges MC. Antiviral activity of sandalwood oil against herpes simplex viruses-1 and- 2. Phytomedicine. 1999 May 1; 6(2):119–23. https:// doi.org/10.1016/S0944-7113(99)80046-4
Paulpandi M, Kannan S, Thangam R, Kaveri K, Gunasekaran P, Rejeeth C. In vitro anti-viral effect of β-santalol against influenza viral replication. Phytomedicine. 2012 Feb 15; 19(3–4):231–5. https://doi.org/10.1016/j.phymed.2011.11.006. PMid:22192867
Xu HB, Ma YB, Huang XY, Geng CA, Wang H, Zhao Y, et al. Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: Rhizomes of Cyperus rotundus. J Ethnopharmacol. 2015 Aug 2; 171:131–40. https:// doi.org/10.1016/j.jep.2015.05.040. PMid:26051832
Parekh J. In-vitro antimicrobial activities of extracts of Launaea procumbens (roxb.) (Labiateae), Vitis vinifera L. (Vitaceae) and Cyperusrotundus L. (Cyperaceae).Afr J Biomed Res. 2006; 9:89–93. https://doi.org/10.4314/ajbr.v9i2.48780
Ma H, Diao Y, Zhao D, Li K, Kang T. A new alternative to treat swine influenza A virus infection: Extracts from Terminalia chebula Retz. Afr J Microbiol Res. 2010; 4(6):49–99.
Omote Y, Tazawa H, Fujinuma Y, Sugiyama N. Synthesis of pipataline. Bull Chem Soc Jpn. 1969; 42:569–70. https://doi.org/10.1246/bcsj.42.569
Hughes BG, Murray BK, North JA, Lawson LD. Antiviral constituents from Allium sativum. Planta Medica. 1989 Feb;55(01):114. https://doi. org/10.1055/s-2006-961894 J Ethno pharmacol. 2006; 107:205–10. https://doi. org/10.1016/j.jep.2006.03.004. PMid:16621378