Common Medicinal Plants and their Role against COVID-19 for Protection and Treatment

Jump To References Section

Authors

  • Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore – 641114, Tamil Nadu ,IN
  • Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi – 626005, Tamil Nadu ,IN
  • Department of Pharmacognosy and Phytochemistry, Parul Institute of Pharmacy & Research, Parul University, Limda, Waghodia – 391760, Vadodara, Gujarat ,IN
  • Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore – 641114, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jnr/2021/26774

Keywords:

Antiviral, Phytochemicals, Secondary Metabolites, SARS-CoV-2
Phyto Medicine

Abstract

COVID-19 is a deadly serious infectious disease caused by SARS-CoV-2, spreading widely with a rise in number of deaths every day. Because of the rapid transmission, various research domains have much responsibility to find a suitable drug or vaccine as soon as possible within a short time to save lives. Plant based chemical constituents serve as potential therapeutics against COVID-19, which is evident by current reports of screening phytochemicals against potential targets by computational techniques. Medicinal plants are used since ancient times and are known highly for their effective treatment of several infectious diseases. This review summarizes the use of medicinal plants to treat COVID-19 infection and aims to draw more attention towards investigating potent chemical constituents from medicinal plants.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2021-04-17

How to Cite

Babu, A., Indiraleka, M., Mohan Maruga Raja, M. K., & Premnath, D. (2021). Common Medicinal Plants and their Role against COVID-19 for Protection and Treatment. Journal of Natural Remedies, 21(2), 99–107. https://doi.org/10.18311/jnr/2021/26774

Issue

Section

Short Review
Received 2021-01-18
Accepted 2021-03-18
Published 2021-04-17

 

References

Reusken CB, Haagmans BL, Müller MA, Gutierrez C, Godeke G-J, Meyer B, et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis. 2013; 13(10):859–66. https:// doi.org/10.1016/S1473-3099(13)70164-6

Omrani AS, Saad MM, Baig K, Bahloul A, AbdulMatin M, Alaidaroos AY, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis. 2014; 14(11):1090–5. https://doi.org/10.1016/S1473-3099(14)70920-X

Muralidharan N, Sakthivel R, Velmurugan D, Gromiha MM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID19. J Biomol Struct Dyn. 2020. p.1–6. https://doi.org/10.1080/07391102.2020.1752802. PMid:32248766

Chan JFW, Chan K-H, Kao RYT, To KKW, Zheng B-J, Li CPY, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect. 2013; 67(6):606–16. https://doi.org/10.1016/j.jinf.2013.09.029. PMid: 24096239. PMCid:PMC7112612

de Wilde AH, Jochmans D, Posthuma CC, ZevenhovenDobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014; 58(8):4875–84. https://doi.org/10.1128/AAC.0301114. PMid:24841269 PMCid:PMC4136071

Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014; 58(8):4885–93. https://doi.org/10.1128/AAC.03036-14. PMid:248412 73 PMCid:PMC4136000

Velavan TP, Meyer CG. The COVID"19 epidemic. Trop Med Int Health. 2020; 25(3):278–80. https://doi.org/10.1111/tmi.13383. PMid:32052514 PMCid:PMC 7169770

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46(4):586–90. https://doi.org/10.1007/s00134020-05985-9. PMid:32125455 PMCid:PMC7079879

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2):271–80. https://doi.org/10.1016/j.cell.2020.02.052. PMid:32142651 PMCid:PMC7102627

Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2):631–7. https://doi.org/10.1002/path.1570. PM id:15141377 PMCid:PMC7167720

Li M-Y, Li L, Zhang Y, Wang X-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020; 9(1). https:// doi.org/10.1186/s40249-020-00662-x. PMid:32345362 PMCid:PMC7186534

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Geno me structure, replication, and pathogenesis. J Med Virol. 2020; 92(4):418–23. https://doi.org/10.1002/ jmv.25681. PMid: 31967327. PMCid:PMC7167049

Subhose V, Srinivas P, Narayana A. Basic principles of pharmaceutical science in Ayurvć•da. Bull Indian Inst Hist Med Hyderabad. 2005; 35(2):83–92.

Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005; 4(3):206–20. https://doi.org/10.1038/nrd1657. PMid:15729362

Pandey MM, Rastogi S, Rawat AKS. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med. 2013; 2013. https://doi.org/10.1155/2013/376327. PMid:23864888 PMCid:PMC3705899

Balachandar V, Mahalaxmi I, Kaavya J, Vivekanandhan G, Ajithkumar S, Arul N, et al. COVID-19: emerging protective measures. Eur Rev Med Pharmacol Sci. 2020; 24(6):3422–5.

Thisoda P, et al. Inhibitory Effect of andrographis paniculata extract and its active diterpenoids on platelet aggregation. Eur J Pharmacol. 2006; 553(1– 3):39–45. https://doi.org/10.1016/j.ejphar.2006.09.05 2. PMid:17081514

Murugan NA, Pandian CJ, Jeyakanthan J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J Biomol Struct Dyn. 2020; 16:1-12. https://doi.org/10.1080/0739110 2.2020.1777901. PMCid:PMC7309306

Rajagopal K, Varakumar P, Baliwada A, Byran G. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): An in silico approach. Future J Pharm Sci. 2020; 6(1). https://doi.org/10.1186/s43094020-00126-x. PMid:33215042. PMCid:PMC7562761

Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther. 2020; 214(107618). https://doi.org/10.1016/j.pharmthera.2020.107618. PMid: 32592716. PMCid:PMC7311916

Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, et al. Antiviral effects of Glycyrrhiza species. Phytother Res. 2008; 22(2):141–8. https://doi.org/10.1002/ ptr.2295. PMid: 17886224. PMCid:PMC7167979

Park JD, Rhee DK, Lee YH. Biological activities and chemistry of Saponins from Panax ginseng C. A. Meyer. Phytochem Rev. 2005; 4(2-3):159–75. https://doi.org/10.1007/s11101-005-2835-8

Yin SY, Kim HJ, Kim H-J. A comparative study of the effects of whole red ginseng extract and polysaccharide and saponin fractions on Influenza A (H1N1) virus infection. Biol Pharm Bull. 2013; 36(6):1002–7. https://doi.org/10.1248/bpb.b13-00123. PMid:23727921

Quan FS, Compans RW, Cho Y-K, Kang S-M. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine. 2007; 25(2):272–82. https://doi.org/10.1016/j.vaccine.2006.07.041. PMid:16945454

Chikhale RV, Gurav SS, Patil RB, Sinha SK, Prasad SK, Shakya A, et al. Sars-cov-2 host entry and replication inhibitors from Indian ginseng: an in-silico approach. J Biomol Struct Dyn. 2020; 1–12. https://doi.org/10.1080/07391102.2020.1778539. PMCid:PMC7332873

Borkotoky S, Banerjee M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J Biomol Struct Dyn. 2020; 1–11. https://doi.org/10.1080/07391102.2020.1 774419. PMid: 32462988. PMCid:PMC7311162

Ansari I, Patil DT. A brief review on phytochemical and pharmacological profile of Carissa spinarum L. Asian J Pharm Clin Res. 2018; 11(9):12. https://doi.org/10.22159/ajpcr.2018.v11i9.26316

Babaei F, Nassiri"Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID"19. Food Sci Nutr. 2020; 8(10):5215– 27. https://doi.org/10.1002/fsn3.1858. PMid: 331335 25. PMCid:PMC7590269

WenzC-C, Kuo Y-H, Jan J-T, Liang P-H, Wang S-Y, Liu H-G, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007 Aug; 50(17):4087–95. https://doi.org/10.1021/jm070295s. PMid:17663539

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565–74. https://doi.org/10.1016/S0140-6736(20)30251-8

Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn. 2020; 1–9. https://doi.org/10.1080/07391102.2020.1775129. PMCid:PMC7298883

Haraguchi Y, Sakurai H, Hussain S, Anner BM, Hoshino H. Inhibition of HIV-1 infection by zinc group metal compounds. Antiviral Res. 1999; 43(2):123–33. https://doi.org/10.1016/S0166-3542(99)00040-6

Katz E, Margalith E. Inhibition of vaccinia virus maturation by zinc chloride. Antimicrob. Agents Chemother. 1981; 19(2):213–7. https://doi.org/10.1128/AAC.19.2.213. PMid:7347557. PMCid:PMC181396

Kaushik N, Subramani C, Anang S, Muthumohan R, Shalimar, Nayak B, et al. Zinc salts block Hepatitis E virus replication by inhibiting the activity of viral RNAdependent RNA polymerase. Ou J-H J, ed. J. Virol. 2017; 91(21). https://doi.org/10.1128/JVI.00754-17. PMid:28814517. PMCid:PMC5640865

te Velthuis, Aartjan te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. Andino R, ed. PLoS Pathogens. 2010; 6(11). https://doi.org/10.1371/journal.ppat.1001176. PMid:21079686. PMCid:PMC2973827

Vimalanathan S, Hudson J. Anti-influenza virus activity of essential oils and vapors. Amer J Essential Oil Nat Prod. 2014; 2(1).

Loizzo MR, Saab AM, Tundis R, Statti GA, Menichini F, Lampronti I, et al. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem Biodivers. 2008; 5(3):461– 70. https://doi.org/10.1002/cbdv.200890045. PMid: 18357554. PMCid:PMC7161995

Reichling J, Schnitzler P, Suschke U, Saller R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties - An overview. Complement Med Res. 2009; 16(2):79–90. https://doi.org/10.1159/000207196. PMid:19420953

Garcí­a CC, Talarico L, Almeida N, Colombres S, Duschatzky C, Damonte EB. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina: Virucidal activity of essential oils. Phyto ther Res. 2003; 17(9):1073–5. https://doi.org/10.1002/ptr.1305. PMid:14595590

Saddi M, Sanna A, Cottiglia F, Chisu L, Casu L, Bonsignore L, et al. Antiherpevirus activity of Artemisia arborescens essential oil and inhibition of lateral diffusion in Vero cells. Ann Clin Microbiol Antimicrob. 2007; 6(1):10. https://doi.org/10.1186/1476-0711-6-10. PMid:17894898. PMC id:PMC2099429

Reichling J, Koch C, Stahl-Biskup E, Sojka C, Schnitzler P. Virucidal activity of a β-Triketone-rich essential oil of Leptospermum scoparium (Manuka Oil) against HSV-1 and HSV-2 in cell culture. Planta Medica. 2005 Nov; 71(12):1123–7. https://doi.org/10.1055/s-2005-873175. PMid:16395648

Schnitzler P, Reichling J. Efficacy of plant products against herpetic infections. HNO. 2011; 59(12):1176– 84. https://doi.org/10.1007/s00106-010-2253-0. PM id:21607799. PMCid:PMC7080060

Koch C, Reichling J, Schnitzler P: Essential oils inhibit the replication of herpes simplex virus Type 1 (HSV-1) and Type 2 (HSV-2); in Preedy VR, Watson RR (eds): Botanical Medicine in Clinical Practice. Wallingsford, CABI; 2008. p. 192–7. https://doi.org/1 0.1079/9781845934132.0192. PMid:18093145

Schnitzler P, Schön K, Reichling J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie. 2001; 56(4):343–7.

Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. https://doi.org/10.20944/preprints202003.0226.v1. PMid:32934811. PMCid:PMC7469571

Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new Coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci. 2020; 16(10):1708–17. https://doi.org/10.7150/ijbs.45538. PMid:32226288. PMCid:PMC7098036

Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh J-W, Cho JK, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem. 2014; 29(1):59–63. https://doi.org/10.3109/14 756366.2012.753591. PMid:23323951

Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HW, Yuk HJ, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem. 2013; 21(11):3051–7. https://doi.org/10.1016/j.bmc.2013.03.027. PMid:23623680. PMCid:PMC7126831

Roh C. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide. Int J Nanomedicine. 2012; 7:2173–9. https://doi.org/10.2147/IJN.S31379. PMid:22619553. PMCid:PMC3356205

Yu M-S, Lee J, Lee JM, Kim Y, Chin Y-W, Jee J-G, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 2012; 22(12):4049–54. https://doi.org/10.1016/j.bmcl.2012.04.081. PMid:225 78462. PMCid:PMC7127438

Khanal P, Duyu T, Patil BM, Dey YN, Pasha I, Wanjari M, et al. Network pharmacology of AYUSH recommended immune-boosting medicinal plants against COVID-19. J Ayurveda Integr Med [Internet]. 2020. Available from: http://dx.doi.org/10.1016/j.jaim.2020.11.004. PMid:33 250601. PMCid:PMC7687402

Aanouz I, Belhassan A, El-Khatabi K, Lakhlifi T, El-ldrissi M, Bouachrine M. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J Biomol Struct Dyn. 2020; 1–9. https://doi.org/10.1080/07391102.2020.17 58790. PMid:32306860. PMCid:PMC7212546

Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions. Molecules. 2020; 25(16). https://doi.org/10.3390/molecules25163596. PMid:32784680. PMCid:P MC7465415

Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - A molecular docking study. J Biomol Struct Dyn. 2020; 1–14. https://doi.org/1 0.1080/07391102.2020.1810778. PMid:32851919. PMCid:PMC7484581

Priya NC, Kumari PS. Antiviral activities and cytotoxicity assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int J Pharm Sci Rev Res. 2017; 44(1):197–202.

Priya NC, Kumari PS. Antiviral activities and cytotoxicity assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int J Pharm Sci Rev Res. 2017; 44(1):197–202.

Mair CE, Liu R, Atanasov AG, Schmidtke M, Dirsch VM, Rollinger JM. Antiviral and anti-proliferative in vitro activities of piperamides from black pepper. Planta Med. 2016; 81(S 01):S1–381. https://doi.org/10.1055/s-0036-1596830

Bhakat S, Soliman MES. Chikungunya virus (CHIKV) inhibitors from natural sources: A medicinal chemistry perspective. J Nat Med. 2015 Apr 29; 69(4):451–62. https://doi.org/10.1007/s11418-0150910-z. PMid:25921858. PMCid:PMC4703636

Ekowati H, Arai J, Damana Putri AS, Nainu F, Shiratsuchi A, Nakanishi Y. Protective effects of Phaseolus vulgaris lectin against viral infection in Drosophila. Drug Discov Ther. 2017; 11(6):329–35. https://doi.org/10.5582/ddt.2017.01071. PMid:29332891

Kumar RV. Plant antiviral immunity against geminiviruses and viral counter-defense for survival. Front Microbiol. 2019; 10:1460. https://doi.org/10.3389/fmicb.2019.01460. PMid:31297106. PMCid:PMC6607972

Ye XY, Ng TB, Tsang PW, Wang J. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J Protein Chem. 2001; 20:367–75. https://doi.org/10.1023/A:1012276619686. PMid:11732688

Das P, Majumder R, Mandal M, Basak P. In-Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (Mpro) from flavonoid based phytochemical constituents of Calendula officinalis. J Biomol Struct Dyn. 2020 Jul 24; 1–16. https://doi.org/10.1080/07391102.2020.179 6799. PMCid:PMC7441784

Chikhale RV, Sinha SK, Patil RB, Prasad SK, Shakya A, Gurav N, et al. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J Biomol Struct Dyn. 2020 Jun 24; 1–15. https://doi.org/10.10 80/07391102.2020.1784289. PMCid:PMC7335809

Wen C-C, Kuo Y-H, Jan J-T, Liang P-H, Wang S-Y, Liu H-G, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007; 50(17):4087–95. https://doi.org/10.1021/jm070295s. PMid:17663539

Cui Q, Du R, Liu M, Rong L. Lignans and their derivatives from plants as antivirals. Molecules. 2020; 25(1):183. https://doi.org/10.3390/molecules25010183. PMid:31906391. PMCid:PMC6982783

Most read articles by the same author(s)