Inhibition of Breast Cancer Proteins by the Flavonoid Naringenin and its Derivative: A Molecular Docking Study
DOI:
https://doi.org/10.18311/jnr/2022/28194Keywords:
Breast Cancer, Docking, Flavonoids, Molecular, Naringenin, Naringenin DerivativeAbstract
Cancer is a multifaceted disease and is a major health burden in the world. Breast cancer is leading cause of mortality among women worldwide. Plant derived compounds have also been used in the treatment of cancer. Amongst them, flavonoids have been well documented for their therapeutic potential against cancer cells. Naringenin is a flavanone abundantly available in grapefruit and tomato among other sources. Several natural and synthetic derivatives of naringenin have been reported for anticancer activity. In this study, naringenin (Nar) and its derivative, naringenin 2-hydroxy benzoyl hydrazone (Nar-Bhz) were studied for their inhibitory potential against proteins involved in breast cancer. Molecular docking simulation by AutoDock was utilized to investigate the interaction of Nar and Nar-Bhz with Survivin, Estrogen receptor ? (ER?), progesterone receptor (PR), Akt1, and Epidermal growth factor receptor (EGFR). Doxorubicin was used as positive control because of its clinical importance in breast cancer treatment. Discovery Studio Visualizer was used to visualize the interactions and the docking results showed that the protein ligand complexes were stabilized by hydrogen bonding and hydrophobic interactions. The binding energies ranged between -7.66 to -7.91 kcal/mol with Nar-Bhz and between -5.49 and -11.05 kcal/mol for Nar. Significant inhibition constant was observed for Nar-Bhz interaction with Akt1 and EGFR. Also, several residues of Akt1 interacted with both the ligands. It can be concluded that naringenin and its derivative have promising inhibitory potential against the breast cancer proteins. The findings of this study may pave the way for detailed exploration of naringenin as breast cancer drug and as a nutraceutical or dietary supplement in daily intake.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2021-09-14
Published 2022-02-14
References
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2021; 71(3):209–49. https://doi.org/10.3322/caac.21660. PMid:33538338
McPherson K, Steel CM, Dixon JM. ABC of breast diseases: Breast cancer-epidemiology, risk factors, and genetics. BMJ: Br. Med. J. 2000; 321(7261):624. https://doi.org/10.1136/bmj.321.7261.624. PMid:10977847. PMCid:PMC1118507
Stuckey A. Breast cancer: Epidemiology and risk factors. Clin. Obstet. Gynecol. 2011; 54(1):96–102. https://doi.org/10.1097/GRF.0b013e3182080056. PMid:21278508
Yuan E, Liu B, Ning Z, Chen C. Preparative separation of flavonoids in Adinandra nitida leaves by high-speed counter-current chromatography and their effects on human epidermal carcinoma cancer cells. Food Chem. 2009; 115(3):1158–63. https://doi.org/10.1016/j.foodchem. 2009.01.009
Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol. 2013; 45(12):2821–31. https://doi.org/10.1016/j.biocel.2013.10.004. PMid:24128857
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013; 2013:162750. https://doi.org/10.1155/2013/162750. PMid:24470791. PMCid:PMC3891543
Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, et al. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Arch. Toxicol. 2014; 88(10):1803–53. https://doi.org/10.1007/s00204-014-1330- 7. PMid:25182418
Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013; 32(40):4814–24. https://doi.org/10.1038/onc.2012.494. PMid:23128392. PMCid:PMC3911914
Plochmann K, Korte G, Koutsilieri E, Richling E, Riederer P, Rethwilm A, et al. Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch. Biochem. Biophys. 2007; 460(1):1–9. https://doi.org/10.1016/j.abb.2007.02.003. PMid:17353006
Sghaier MB, Skandrani I, Nasr N, Franca MGD, Chekir- Ghedira L, Ghedira K. Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: A structure-activity relationship study. Environ. Toxicol. Pharm. 2011; 32(3):336–48. https://doi.org/10.1016/j.etap.2011.07.003. PMid:22004952
Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals. 2019; 12(1):1– 18. https://doi.org/10.3390/ph12010011. PMid:30634637. PMCid:PMC6469163
Chandrika BB, Steephan M, Kumar TRS, Sabu A, Haridas M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci. 2016; 160:47–56. https://doi.org/10.1016/j.lfs.2016.07.007. PMid:27449398
Zhang F, Dong W, Zeng W, Zhang L, Zhang C, Qiu Y, et al. Naringenin prevents TGF-κ1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res. : BCR. 2016; 18(1):38. https://doi.org/10.1186/s13058-016-0698-0. PMid:27036297. PMCid:PMC4818388
Mir IA, Tiku AB. Chemopreventive and therapeutic potential of “Naringenin,” a flavanone present in citrus fruits. Nutr. Cancer. 2015; 67(1):27–42. https://doi.org/10.1080/01635581.2015.976320. PMid:25514618
Wang BD, Yang ZY, Wang Q, Cai TK, Crewdson P. Synthesis, characterization, cytotoxic activities, and DNA-binding properties of the La(III) complex with Naringenin Schiffbase. Bioorg. Med. Chem. 2006;14(6):1880–8. https://doi.org/10.1016/j.bmc.2005.10.031. PMid:16310358
Li T-R, Yang Z-Y, Wang B-D. Synthesis, characterization and antioxidant activity of naringenin Schiff base and its Cu(II), Ni(II), Zn(II) complexes. Chem. Pharm. Bull. (Tokyo). 2007; 55(1):26–8. https://doi.org/10.1248/cpb.55.26. PMid:17202696
Sun TM, Wang YC, Wang F, Du JZ, Mao CQ, Sun CY, et al. Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials. 2014; 35(2):836–45. https://doi.org/10.1016/j.biomaterials. 2013.10.011. PMid:24144908
Jiang T, Li YM, Lv Y, Cheng YJ, He F, Zhuo RX. Amphiphilic polycarbonate conjugates of doxorubicin with pH-sensitive hydrazone linker for controlled release. Colloids Surf. B. 2013; 111:542–8. https://doi.org/10.1016/j.colsurfb.2013.06.054. PMid:23893028
Nikolova-Mladenova B, Momekov G, Ivanov D, Bakalova A. Design and drug-like properties of new 5-methoxysalicylaldehyde based hydrazones with anti-breast cancer activity. J. Appl. Biomed. 2017; 15(3):233–40. https://doi.org/10.1016/j.jab.2017.04.004
Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. Invasive breast cancer version 1.2016. JNCCN J. Natl. Compr. Cancer Netw. 2016; 14(3):324–54. https://doi.org/10.6004/jnccn.2016.0037. PMid:26957618
Garg H, Suri P, Gupta JC, Talwar GP, Dubey S. Survivin: A unique target for tumor therapy. Cancer Cell Int. 2016; 16(1):1–14. https://doi.org/10.1186/s12935-016-0326-1. PMid:27340370. PMCid:PMC4917988
Jia M, Dahlman-Wright K, Gustafsson JÅ. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015; 29(4):557–68. https://doi.org/10.1016/j.beem.2015.04.008. PMid:26303083
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, et al. Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiol. Rev.. 2017; 97(3):1045–87. https://doi.org/10.1152/physrev.00024.2016. PMid:28539435
Siersbæk R, Kumar S, Carroll JS. Signaling pathways and steroid receptors modulating estrogen receptor ? function in breast cancer. Genes Dev. 2018; 32(17–18):1141–54. https://doi.org/10.1101/gad.316646.118. PMid:30181360. PMCid:PMC6120708
Li X, O’Malley BW. Unfolding the action of progesterone receptors. J. Biol. Chem. 2003; 278(41):39261–4. https://doi.org/10.1074/jbc.R300024200. PMid:12893816
Osborne CK. Steroid hormone receptors in breast cancer management. Breast Cancer Res. Treat. 1998; 51(3):227–38. https://doi.org/10.1023/A:1006132427948. PMid:10068081
Shyamala G, Chou YC, Louie SG, Guzman RC, Smith GH, Nandi S. Cellular expression of estrogen and progesterone receptors in mammary glands: Regulation by hormones, development and aging. J. Steroid Biochem. Mol. Biol. 2002; 80(2):137–48. https://doi.org/10.1016/S0960-0760(01)00182-0
Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three akts. Genes Dev. 1999; 13(22):2905–27. https://doi.org/10.1101/gad.13.22.2905. PMid:10579998
Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 2008; 358:1160–74. https://doi.org/10.1056/NEJMra0707704. PMid:18337605
Ioannou N, Seddon AM, Dalgleish A, Mackintosh D, Modjtahedi H. Expression pattern and targeting of HER family members and IGF-IR in pancreatic cancer. Front. Biosci. 2012; 17(4):2698–724. https://doi.org/10.2741/4081. PMid:22652808
Khelwatty SA, Essapen S, Seddon AM, Modjtahedi H. Prognostic significance and targeting of HER family in colorectal cancer. Front. Biosci. 2013; 18:394–421. https://doi.org/10.2741/4110. PMid:23276932
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009; 30(16):2785– 91. https://doi.org/10.1002/jcc.21256. PMid:19399780. PMCid:PMC2760638
Raeisi S, Chavoshi H, Mohammadi M, Ghorbani M, Sabzichi M, Ramezani F. Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin-dependent apoptosis in HT-29 cell line. Process. Chem. 2019; 83:168–75. https://doi.org/10.1016/j.procbio.2019.05.013
Ryan BM, O’Donovan N, Duffy MJ. Survivin: A new target for anti-cancer therapy. Cancer Treat. Rev. 2009; 35(7):553–62. https://doi.org/10.1016/j.ctrv.2009.05.003. PMid:19559538
Taglieri L, De Iuliis F, Giuffrida A, Giantulli S, Silvestri I, Scarpa S. Resistance to the mTOR inhibitor everolimus is reversed by the downregulation of survivin in breast cancer cells. Oncol. Lett. 2017; 14(3):3832–38. https://doi.org/10.3892/ol.2017.6597. PMid:28927154. PMCid:PMC5587981
McGuire WL. Estrogen receptors in human breast cancer. J. Clin. Investig. 1973; 52(1):73–77. https://doi.org/10.1172/JCI107175. PMid:4345203. PMCid:PMC302228
Ali S, Mondal N, Choudhry H, Rasool M, Pushparaj PN, Khan MA, et al. Current management strategies in breast cancer by targeting key altered molecular players. Front. Oncol. 2016; 6(Mar). https://doi.org/10.3389/fonc.2016.00045
Colditz GA. Relationship between estrogen levels, use of hormone replacement therapy, and breast cancer. J Natl Cancer Inst. 1998; 90(11):814–23. https://doi.org/10.1093/jnci/90.11.814. PMid:9625169
Hankinson SE, Colditz GA, Willett WC. The lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res. 2004; 6(5):213–18. https://doi.org/10.1186/bcr921. PMid:15318928. PMCid:PMC549181
Patel HK, Bihani T. Selective Estrogen Receptor Modulators (SERMs) and Selective Estrogen Receptor Degraders (SERDs) in cancer treatment. Pharmacol. Ther. 2018; 186:1– 24. https://doi.org/10.1016/j.pharmthera.2017.12.012. PMid:29289555
Kumar N, Gulati HK, Sharma A, Heer S, Jassal AK, Arora L, et al. Most recent strategies targeting estrogen receptor alpha for the treatment of breast cancer. Mol. Divers. 2021; 25(1):603–24. https://doi.org/10.1007/s11030-020-10133-y. PMid:32886304
Al-Bader M, Ford C, Al-Ayadhy B, Francis I. Analysis of estrogen receptor isoforms and variants in breast cancer cell lines. Exp. Ther. Med. 2011; 2(3):537–44. https://doi.org/10.3892/etm.2011.226. PMid:22977537. PMCid:PMC3440683
El-Kersh DM, Ezzat SM, Salama MM, Mahrous EA, Attia YM, Ahmed MS, et al. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci. Rep. 2021; 11(1):1–14. https://doi.org/10.1038/s41598- 021-86599-z. PMid:33782546. PMCid:PMC8007834
So FV, Guthrie N, Chambers AF, Carroll KK. Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett. 1997; 112(2):127– 33. https://doi.org/10.1016/S0304-3835(96)04557-0
Mohammed H, Russell IA, Stark R, Rueda OM, Hickey TE, Tarulli GA, et al. Progesterone receptor modulates ER? action in breast cancer. Nature. 2015; 523(7560):313–17. https://doi.org/10.1038/nature14583. PMid:26153859. PMCid:PMC4650274
Wagenfeld A, Saunders PTK, Whitaker L, Critchley HOD. Selective progesterone receptor modulators (SPRMs): Progesterone receptor action, mode of action on the endometrium and treatment options in gynecological therapies. Expert Opin. Ther. Targets. 2016; 20(9):1045–54. https://doi.org/10.1080/14728222.2016.1180368. PMid:27138351. PMCid:PMC4989858
Miller TW, Rexer BN, Garrett JT, Arteaga CL. Mutations in the phosphatidylinositol 3-kinase pathway: Role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 2011; 13(6). https://doi.org/10.1186/bcr3039. PMid:22114931. PMCid:PMC3315683
Rao VV, Mane SR, Kishore A, Das Sarma J, Shunmugam R. Norbornene derived doxorubicin copolymers as drug carriers with pH responsive hydrazone linker. Biomacromolecules. 2012; 13(1):221–30. https://doi.org/10.1021/bm201478k. PMid:22107051
Shin SY, Yong Y, Kim CG, Lee YH, Lim Y. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett. 2010; 287(2):231–9. https://doi.org/10.1016/j.canlet.2009.06.019. PMid:19616373
Ju X, Katiyar S, Wang C, Liu M, Jiao X, Li S, et al. Akt1 governs breast cancer progression in vivo. Proc Natl Acad Sci USA. 2007; 104(18):7438–43. https://doi.org/10.1073/pnas.0605874104. PMid:17460049. PMCid:PMC1863437
Bak Y, Kim H, Kang J-W, Lee DH, Kim MS, Park YS, et al. A synthetic naringenin derivative, 5-Hydroxy-7, 4‘-diacetyloxyflavanone-N-phenyl Hydrazone (N101- 43), induces apoptosis through Up-regulation of Fas/FasL expression and inhibition of PI3K/Akt signaling pathways in non-small-cell lung cancer cells. J. Agric. Food Chem. 2011; 59(18):10286–97. https://doi.org/10.1021/jf2017594. PMid:21877710
Kim J-H, Kang JW, Kim MS, Bak Y, Park YS, Jung K-Y, et al. The apoptotic effects of the flavonoid N101-2 in human cervical cancer cells. Toxicology In Vitro. 2012; 26(1):67–73. https://doi.org/10.1016/j.tiv.2011.10.012. PMid:22056764
Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, et al. Review series ErbB receptors : from oncogenes to targeted cancer therapies. Molecules. 2007; 117(8):2051–8. https://doi.org/10.1172/JCI32278. PMid:17671639. PMCid:PMC1934579