Synthesis of Zinc Oxide Nanoparticles Using Stem Extract of Citrullus colocynthis, Characterization and Evaluation of its Antibacterial Activity
DOI:
https://doi.org/10.18311/jnr/2023/28934Keywords:
Antimicrobial Activity, Characterization, Citrullus colocynthis, Cytotoxicity, Zinc Oxide NanoparticlesAbstract
In the current investigation, an attempt is made to synthesize and characterize the Citrullus colocynthis stem extract loaded Zinc Oxide Nano Particles (ZnONP-Cc) and to evaluate the cytotoxicity and antimicrobial activities of the same. The synthesis of ZnONP-Cc was carried out and the characterization in terms of UV-Spectrum, Fourier Transform Infra-Red (FT-IR) spectrum, Transmission Electron Microscope (TEM), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) analysis were done. The antimicrobial and cytotoxic activities of the ZnONP-Cc were evaluated using the established protocol. In the UV-Spectrum significant SPR peak was observed at 350 nm and FT-IR spectrum exhibited several biomolecules with their chemical entities. Through XRD method, the zinc oxide nanoparticles Face-Centered Cubic (FCC) structure was confirmed. The SEM and TEM confirm the synthesized nanoparticles were round and oval shape with size ranging from 10 - 20 nm. The ZnONP-Cc possess significant antimicrobial activity against wound pathogens and it was found to be non-toxic to the Brine shrimp nauplii. In conclusion, the synthesized ZnONP-Cc can be exploited in nanomedicine since it has antimicrobial activity without any toxicity.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 sukanya K, Rajeswary Hari, Priya Chokkalinagam
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-04-20
Published 2023-07-28
References
Dawadi S, Katuwal S, Gupta A, Lamichhane U, Thapa R, Jaisi S, Lamichhane G, Bhattarai DP, Parajuli N. Current research on silver nanoparticles: Synthesis, characterization, and applications. J Nanomater. 2021; 8:20-21. https://doi. org/10.1155/2021/6687290 DOI: https://doi.org/10.1155/2021/6687290
Arshad H, Sami MA, Sadaf S, Hassan U. Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy. Sci. Rep. 2021; 16(11):1-13. https:// doi.org/10.1038/s41598-021-85584-w PMid:33727607 PMCid:PMC7966387 DOI: https://doi.org/10.1038/s41598-021-85584-w
Donga S, Chanda S. Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system). Artif Cells Nanomed Biotechnol. 2021; 49(1):292-302. https://doi.org/10.1080/21691401.2021.189 9193 PMid:33733973 DOI: https://doi.org/10.1080/21691401.2021.1899193
Kandiah M, Kavishadhi N, Chandrasekaran. Green synthesis of silver nanoparticles using Catharanthus roseus flower extracts and the determination of their antioxidant, antimicrobial, and photocatalytic activity. Hindawi J of Nanotech. 2021. https://doi.org/10.1155/2021/5512786 DOI: https://doi.org/10.1155/2021/5512786
Hari S, Chokkalinagam P, Baskaran P. Anti-gout arthritic activities of ethanolic and zinc oxide nanoparticle extracts of Citrullus colocynthis - An in vitro and in silico studies. Annals of R.S.C.B. 2021; 25(3):1583-6258. https://www. annalsofrscb.ro/index.php/journal/article/view/2340
Vanaja M, Paulkumar K, Baburaja M, Rajeshkumar S, Gnanajobitha G, Malarkodi C, Sivakavinesan M, Annadurai G. Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem Appl. 2014; 19(8):742-346. https://doi.org/10.1155/2014/742346 PMid:24772055 PMCid:PMC3977556 DOI: https://doi.org/10.1155/2014/742346
Chawech R, Jarraya R, Girardi C, Vansteelandt M, Marti G, Nasri I, Racaud-Sultan C, Fabre N. Cucurbitacins from the leaves of Citrullus colocynthis (L.) Schrad. Mole. 2015; 20(10):18001-15. https://doi.org/10.3390/ molecules201018001 PMid:26437392 PMCid:PMC6332406 DOI: https://doi.org/10.3390/molecules201018001
Kapoor M, Kaur N, Sharma C, Kaur G, Kaur R, Batra K, Rani J. Citrullus colocynthis an important plant in Indian traditional system of medicine. Pharmacog. Rev. 2020; 14(27):22-27. https://doi.org/10.5530/phrev.2020.14.4 DOI: https://doi.org/10.5530/phrev.2020.14.4
Bourhia M, Messaoudi M, Bakrim H, Mothana RA, Sddiqui NA, Almarfadi OM, El Mzibri M, Gmouh S, Laglaoui A, Benbacer L. Citrullus colocynthis (L.) Schrad: Chemical characterization, scavenging and cytotoxic activities. Open Chemistry. 2020; 18(1):986-94. https://doi.org/10.3390/ separations8080114 DOI: https://doi.org/10.1515/chem-2020-0124
Manosalva N, Tortella G, Diez MC, Schalchli H, Seabra AB, Durán N, Rubilar O. Green synthesis of silver nanoparticles effect of synthesis reaction parameters on antimicrobial activity. World J of Microbiol Biotechnol. 2019; 35(6):88. https://doi.org/10.1038/s41598-021- 92812-w PMid:34188097 PMCid:PMC8242066 DOI: https://doi.org/10.1007/s11274-019-2664-3
Rajeshkumar S, Kumar V. Synthesis and characterization of silver nanoparticles from marine brown seaweed and its antifungal efficiency against clinical fungal pathogens. Asian J Pharm Clin Res. 2017; 1:190-3. https://doi.org/10.22159/ ajpcr.2017.v10i2.15127 DOI: https://doi.org/10.22159/ajpcr.2017.v10i2.15127
Wu S, Rajeshkumar S, Madasamy M, Mahendran V. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif Cells Nanomed Biotechnol. 2020; 48(1):1153-8. https://doi.org/10.1080/21691401.2020 .1817053 PMid:32924614 DOI: https://doi.org/10.1080/21691401.2020.1817053
Baek MK, Kim MK, Cho HJ, Lee JA, Yu J, Chung HE, Choi SJ. Factors influencing the cytotoxicity of zinc oxide nanoparticles: Particle size and surface charge. In Journal of Physics: Conference Series 2011; 304(1):0120-44. https:// doi.org/10.1088/1742-6596/304/1/012044 DOI: https://doi.org/10.1088/1742-6596/304/1/012044
Girma M, Sabir FK, Edossa GD, Gonfa BA. Synthesis of zinc oxide nanoparticles using leaf extract of Lippia adoensis (koseret) and evaluation of its antibacterial activity. J Chem. 2020; 9:74590-42. https://doi.org/10.1155/2020/7459042 DOI: https://doi.org/10.1155/2020/7459042
Alamdari S, Ghamsari MS, Lee C, Han W, Park H, Tafreshi MJ, Afarideh H, Ara MHM. Preparation and characterization of Zinc Oxide nanoparticles using leaf extract of Sambucus ebulus. Appl. Sci. 2020; 10:36-20. https://doi.org/10.3390/app10103620 DOI: https://doi.org/10.3390/app10103620
Jayachandran A, Aswathy TR, Nair AS. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophy Reports. 2021; 26:100-995. https://doi.org/10.1016/j.bbrep.2021.100995 PMid:33898767 PMCid:PMC8055550 DOI: https://doi.org/10.1016/j.bbrep.2021.100995
Hassan SS, El Azab WI, Ali HR, Mansour MS. Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv. Nat. Sci. Nanosci.Nanotech. 2015; 6(4):045012. https://doi. org/10.1088/2043-6262/6/4/045012 DOI: https://doi.org/10.1088/2043-6262/6/4/045012
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications and therapeutic approaches. Int J Mol Sci. 2016; 17(9):1534. https://doi.org/10.3390/ijms17091534 PMid:27649147 PMCid:PMC5037809 DOI: https://doi.org/10.3390/ijms17091534
Sharmila G, Thirumarimurugan M, Muthu Kumaran C. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem J. 2019; 145:578-87. https://doi.org/10.1016/j. microc.2018.11.022 DOI: https://doi.org/10.1016/j.microc.2018.11.022
Sandhiya. V, Thirunavukkarasu. P, Gomathy. Sridhar M, Rajeshkumar, Ravi. M, Asha S. Agnp-Hp synthesized using red marine algae Hymenia pseudofloresii and its pharmacological activities annals of R.S.C.B. 2021; 25(6):1583-6258. https://annalsofrscb.ro/index.php/ journal/article/view/9758
Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azedarach and their antibacterial potential. Scientific Rep. 2020; 10(1):1-10. https://doi. org/10.1038/s41598-020-65949-3 PMid:32493935 PMCid: PMC7270115 DOI: https://doi.org/10.1038/s41598-020-65949-3
Degefa A, Bekele B, Jule LT, Fikadu B, Ramaswamy S, Dwarampudi LP, Nagaprasad N, Ramaswamy K. Green Synthesis, Characterization of Zinc Oxide nanoparticles, and examination of properties for dye-sensitive solar cells using various vegetable extracts. JNanomat. 2021; 2021(9):3941-943. https://doi.org/10.1155/2021/3941923 DOI: https://doi.org/10.1155/2021/3941923
Chaudhary A, Kumar N, Kumar R, Salar RK. Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract. SN Applied Sciences. 2019; 1(1):1-9. https://doi.org/10.1007/s42452-018-0144-2 DOI: https://doi.org/10.1007/s42452-018-0144-2
Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayur. Integra medi. 2020; 11(1):37-44. https://doi.org/10.1016/j.jaim.2017.11.003 PMid:30120058 PMCid:PMC7125370 DOI: https://doi.org/10.1016/j.jaim.2017.11.003
Guntur SR, Kumar NS, Hegde MM, Dirisala VR. In vitro studies of the antimicrobial and free-radical scavenging potentials of silver nanoparticles biosynthesized from the extract of Democracy bipinnate. Analy Chem Insights. 2018; 13:1-9. https://doi.org/10.1177/1177390118782877 PMid:30013309 PMCid:PMC6039906 DOI: https://doi.org/10.1177/1177390118782877
Rajendran SP, Sengodan K. Synthesis and characterization of Zinc Oxide and Iron Oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. Hindawi J Nanosci. 2017; 10:8348-507. https://doi.org/10.1155/2017/8348507 DOI: https://doi.org/10.1155/2017/8348507
Chithralekha B, Rajeshkumar S. Cytotoxic effect of Aloe vera and neem herbal formulations assisted silver nanoparticles. Drug Inven Today. 2019; 12(10).