A Systematic Review on the Pharmacological Prospectives of Vitex negundo in Ayurveda Drug Research

Jump To References Section

Authors

  • Department of Rasashastra and Bhaishajya Kalpana, Amrita School of Ayurveda, Amrita Vishwa Vidyapeetham, Amritapuri – 690525, Kerala ,IN
  • Department of Agadatantra and Vyavahara Ayurveda (Toxicology, Jurisprudence and Forensic Medicine), Amrita School of Ayurveda, Amrita Vishwa Vidyapeetham, Amritapuri - 690525 ,IN
  • Department of Rasashastra and Bhaishajya Kalpana, Amrita School of Ayurveda, Amrita Vishwa Vidyapeetham, Amritapuri – 690525, Kerala ,IN
  • Department of Rasashastra and Bhaishajya Kalpana, Amrita School of Ayurveda, Amrita Vishwa Vidyapeetham, Amritapuri – 690525, Kerala ,IN

DOI:

https://doi.org/10.18311/jnr/2023/29806

Keywords:

Ayurveda, Pharmacology, Research, Vitex negundo

Abstract

In Ayurveda, there are many formulations containing Vitex negundo which is indicated in specific pathogenic and non-pathogenic condition. Hence this review attempted to explore the data of research at a glimpse. Peer reviewed and published data from PubMed had been selected for the same. The PubMed database (2009 to 2019) were searched using the keyword ‘Vitex negundo’, ‘Ayurveda’ with Boolean operator ‘AND’. A total of 45 free full text articles were retrieved from 57 articles with specific inclusion criteria. All the 45 studies were categorized into in silico studies, analytical studies, in vitro studies, in vivo studies and clinical studies. Then the data such as the type and design of research, the techniques used, and sample size were categorized into tables and the results were attained through thorough reading and analysis. A descriptive method is adopted for the review and quality aspects of the data were not taken into consideration. Compounds namely, acerosin and thymol were studied in in silico as an inhibitor for mTOR and on skin diseases respectively. Analytical studies explored the presence of compounds such as estriol, angnuside, phydroxybenzoicacid etc. Pharmacological activities such as anti-bacterial, anti-cancerous, anti-tubercular were studied in vitro and in vivo. A clinical study on Nirgundi khanavati in gridrasi (sciatica) is found to be effective in reducing the pain threshold. The phytochemical research of the drug were also proven against carcinoma. There is a high scope for research for more clinical studies and standardization with advanced analytical procedures and marker compounds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-08

How to Cite

Devipriya, S., Mohan, P., Mohanan, A., & Vineeth, P. K. (2023). A Systematic Review on the Pharmacological Prospectives of <i>Vitex negundo</i> in <i>Ayurveda</i> Drug Research. Journal of Natural Remedies, 23(4), 1153–1171. https://doi.org/10.18311/jnr/2023/29806

Issue

Section

Review Articles
Received 2022-03-15
Accepted 2023-09-19
Published 2023-11-08

 

References

Kumar AA, Chandrasekaran T, Ahamed R. Adsorption of Cd(II) from aqueous solution by activated carbon prepared from Vitex negundo stem. Available online www.jocpr.com J Chem Pharm Res [Internet]. [cited 2019 Nov 22]; 2017; 3:95–102. Available from: www.jocpr.com

Huang HC, Chang TY, Chang LZ, Wang HF, Yih KH, Hsieh WY, et al. Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of Vitex negundo linn and chemical composition analysis by GC-MS. Molecules. 2012; 17(4):3902–16. https://doi.org/10.3390/molecules17043902 PMid:22466851 PMCid:PMC6268308 DOI: https://doi.org/10.3390/molecules17043902

Saklani S, Mishra AP, Chandra H, Atanassova MS, Stankovic M, Sati B, et al. Comparative evaluation of polyphenol contents and antioxidant activities between ethanol extracts of Vitex negundo and Vitex trifolia L. Leaves by different methods. Plants. 2017; 6(4). https://doi.org/10.3390/plants6040045 PMid:28953235 PMCid:PMC5750621 DOI: https://doi.org/10.3390/plants6040045

Morice AH, McGarvey L, Pavord I. Recommendations for the management of cough in adults. Vol. 61, Thorax. 2006. https://doi.org/10.1136/thx.2006.065144 PMid:16936230 PMCid:PMC2080754 DOI: https://doi.org/10.1136/thx.2006.065144

Vinuchakkaravarthy T, Sangeetha CK, Velmurugan D. Tris(2,4-di-tert-butylphenyl) phosphate. Acta Crystallogr Sect E Struct Reports Online. 2010; 66(9). https://doi.org/10.1107/S1600536810029673 PMid:21588579 PMCid:PMC3008051 DOI: https://doi.org/10.1107/S1600536810029673

Chattopadhyay P, Hazarika S, Dhiman S, Upadhyay A, Pandey A, Karmakar S, et al. Vitex negundo inhibits cyclooxygenase-2 inflammatory cytokine-mediated inflammation on carrageenan-induced rat hind paw edema. Pharmacognosy Res. 2012; 4(3):134–7. https://doi.org/10.4103/0974-8490.99072 PMid:22923950 PMCid:PM C3424839 DOI: https://doi.org/10.4103/0974-8490.99072

Brightling CE, Ward R, Goh KL, Wardlaw AJ, Pavord ID. Eosinophilic bronchitis is an important cause of chronic cough. Am J Respir Crit Care Med [Internet]. 1999 [cited 2019 Nov 16]; 160(2):406–10. https://doi.org/10.1164/ajrccm.160.2.9810100 PMid:10430705 Available from: http://www.atsjournals.org/doi/abs/10.1164/ajrccm.160.2.9810100 DOI: https://doi.org/10.1164/ajrccm.160.2.9810100

Patel J, Deshpande S. Antieosinophilic activity of various subfractions of leaves of Vitex negundo. Int J Nutr Pharmacol Neurol Dis [Internet]. 2013; 3(2):135. Available from: http://www.ijnpnd.com/text.asp?2013/3/2/135/112839 [cited 2019 Nov 16] https://doi.org/10.4103/2231-0738.112839 DOI: https://doi.org/10.4103/2231-0738.112839

Haq RU, Shah AUHA, Khan AU, Ullah Z, Khan HU, Khan RA, et al. Antitussive and toxicological evaluation of Vitex negundo. Nat Prod Res. 2012; 26(5):484–8. https://doi.org/10.1080/14786419.2010.534472 PMid:21809956 DOI: https://doi.org/10.1080/14786419.2010.534472

Giebink GS. Otitis media update: Pathogenesis and treatment. The Annals of otology, rhinology and laryngology. Supplement. 1992; 155:21–3. https://doi. org/10.1177/00034894921010S105 PMid:1728895 DOI: https://doi.org/10.1177/00034894921010S105

Kannathasan K, Senthilkumar A, Venkatesalu V. In vitro antibacterial potential of some Vitex species against human pathogenic bacteria. Asian Pac J Trop Med. 2011; 4(8):645–8. https://doi.org/10.1016/S1995-7645(11)60164-8 PMid:21914544 DOI: https://doi.org/10.1016/S1995-7645(11)60164-8

Kamruzzaman M, Bari SMN, Faruque SM. In vitro and in vivo bactericidal activity of Vitex negundo leaf extract against diverse multidrug resistant enteric bacterial pathogens. Asian Pac J Trop Med. 2013; 6(5):352–9. https://doi.org/10.1016/S1995-7645(13)60038-3 PMid:23608373 DOI: https://doi.org/10.1016/S1995-7645(13)60038-3

Nagarsekar KS, Nagarsenker MS, Kulkarni SR. Evaluation of composition and antimicrobial activity of supercritical fluid extract of leaves of Vitex negundo. Indian J Pharm Sci. 2010; 72(5):641–3. https://doi.org/10.4103/0250-474X.78537 PMid:21695000 PMCid:PMC3116313

Vinuchakkaravarthy T, Kumaravel KP, Ravichandran S, Velmurugan D. Active compound from the leaves of Vitex negundo L. shows anti-inflammatory activity with evidence of inhibition for secretory phospholipase A2 through molecular docking. Bioinformation. 2011; 7(4):199–206. https://doi.org/10.6026/97320630007199 PMid:22102777 PMCid:PMC3218522 DOI: https://doi.org/10.6026/97320630007199

Medeiros-Neto G. Multinodular Goiter [Internet]. Endotext. 2000 [cited 2019 Nov 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25905424

Gonçalves CFL, De Freitas ML, Ferreira ACF. Flavonoids, thyroid iodide uptake and thyroid cancer—A review. Vol. 18, International Journal of Molecular Sciences. MDPI AG; 2017. https://doi.org/10.3390/ijms18061247 PMid:28604619 PMCid:PMC5486070 DOI: https://doi.org/10.3390/ijms18061247

Shastri AD. Baishajya ratnavali. 15th ed. chaukhambha sanskrit sansthan V, editor.

Schumacher HR. The pathogenesis of gout. Cleve Clin J Med. 2008; 75(SUPPL.5):2–4. https://doi.org/10.3949/ccjm.75.Suppl_5.S2 PMid:18822468 DOI: https://doi.org/10.3949/ccjm.75.Suppl_5.S2

Khan A, Naz S, Farooq U, Shahid M, Ullah I, Ali I, et al. Bioactive chromone constituents from Vitex negundo alleviate pain and inflammation. J Pain Res. 2018; 11:95–102. https://doi.org/10.2147/JPR.S145551 PMid:29343985 PM Cid:PMC5749391 DOI: https://doi.org/10.2147/JPR.S145551

Nile SH, Park SW. HPTLC analysis, antioxidant and antigout activity of Indian plants. Iran J Pharm Res. 2014;13(2): 531–9.

Abu Bakar FI, Abu Bakar MF, Rahmat A, Abdullah N, Sabran SF, Endrini S. Anti-gout potential of Malaysian medicinal plants. Vol. 9, Frontiers in Pharmacology. Frontiers Media S.A.; 2018. https://doi.org/10.3389/fphar.2018.00261 PMid: 29628890 PMCid:PMC5876239 DOI: https://doi.org/10.3389/fphar.2018.00261

Mathis S, Jala VR, Haribabu B. Role of leukotriene B4 receptors in rheumatoid arthritis. Vol. 7, Autoimmunity Reviews. 2007. p. 12–7. https://doi.org/10.1016/j.autrev. 2007.03.005 PMid:17967719 PMCid:PMC2349985 DOI: https://doi.org/10.1016/j.autrev.2007.03.005

Pandey A, Bani S, Satti NK, Gupta BD, Suri KA. Anti-arthritic activity of agnuside mediated through the down-regulation of inflammatory mediators and cytokines. Inflamm Res. 2012; 61(4):293–304. https://doi.org/10.1007/s00011-011-0410-x PMid:22228102 DOI: https://doi.org/10.1007/s00011-011-0410-x

Heidari B. Rheumatoid arthritis: Early diagnosis and treatment outcomes. Casp J Intern Med. 2011; 2(1):161–70.

Seibert K, Masferrer J, Zhang Y, Gregory S, Olson G, Hauser S, et al. Mediation of inflammation by cyclooxygenase-2. In: Agents and Actions. 1995. p. 41–50. https://doi.org/10.1007/978-3-0348-7276-8_5 PMid:7610990 DOI: https://doi.org/10.1007/978-3-0348-7276-8_5

Scher JU, Pillinger MH. The anti-inflammatory effects of prostaglandins. In: Journal of Investigative Medicine. BMJ Publishing Group; 2009. p. 703–8. https://doi.org/10.2310/JIM.0b013e31819aaa76 PMid:19240648 DOI: https://doi.org/10.2310/JIM.0b013e31819aaa76

Zheng CJ, Zhang XW, Han T, Jiang YP, Tang JY, Brömme D, et al. Anti-inflammatory and anti-osteoporotic lignans from Vitex negundo seeds. Fitoterapia. 2014; 93:31–8. https://doi.org/10.1016/j.fitote.2013.12.006 PMid:24369311 DOI: https://doi.org/10.1016/j.fitote.2013.12.006

Conti B. Prostaglandin E2 that triggers fever is synthesized through an endocannabinoid-dependent pathway. Temperature. 2016; 3(1):25–7. https://doi.org/10.1080/23328940.2015.1130520 PMid:27227089 PMCid:PMC4861185 DOI: https://doi.org/10.1080/23328940.2015.1130520

Umamaheswari M, Asokkumar K, Umamageswari N, Sivashanmugam T, Subhadradevi V. Protective effect of the leaves of Vitex negundo against ethanol-induced cerebral oxidative stress in rats. Tanzan J Health Res. 2012; 14(1):1-11. https://doi.org/10.4314/thrb.v14i1.5 PMid:26591743 DOI: https://doi.org/10.4314/thrb.v14i1.5

Ling TJ, Ling WW, Chen YJ, Wan XC, Xia T, Du XF, et al. Antiseptic activity and phenolic constituents of the aerial parts of Vitex negundo var. cannabifolia. Molecules. 2010; 15(11):8469–77.https://doi.org/10.3390/molecules15118469 PMid:21088661 PMCid:PMC6259273 DOI: https://doi.org/10.3390/molecules15118469

Abidin L, Mujeeb M, Mir SR, Khan SA, Ahmad A. Comparative assessment of extraction methods and quantitative estimation of luteolin in the leaves of Vitex negundo Linn. by HPLC. Asian Pac J Trop Med. 2014; 7(S1):S289–93. https://doi.org/10.1016/S1995-7645(14)60248-0 PMid:25312138 DOI: https://doi.org/10.1016/S1995-7645(14)60248-0

Weng Z, Patel AB, Vasiadi M, Therianou A, Theoharides TC. Luteolin inhibits human keratinocyte activation and decreases NF-κB induction that is increased in psoriatic skin. PLoS One. 2014; 9(2). https://doi.org/10.1371/journal.pone.0090739 PMid:24587411 PMCid:PMC3938790 DOI: https://doi.org/10.1371/journal.pone.0090739

Sivamani P, Singaravelu G, Thiagarajan V, Jayalakshmi T, Kumar GR. Comparative molecular docking analysis of essential oil constituents as elastase inhibitors. Bioinformation. 2012; 8(10):457–60. https://doi.org/10.6026/97320630008457 PMid:22715299 PMCid:PMC3374355 DOI: https://doi.org/10.6026/97320630008457

de Castro RD, de Souza TMPA, Bezerra LMD, Ferreira GLS, de Brito Costa EMM, Cavalcanti AL. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: An in vitro study. BMC Complement Altern Med. 2015; 15(1). https://doi.org/10.1186/s12906-015-0947-2 PMid:26601661 PMCid:PMC4659158 DOI: https://doi.org/10.1186/s12906-015-0947-2

Prajapati P, Shukla V, Ravishankar B, Mitra S. Impact of Bhavana Samskara on physico-chemical parameters with special reference to Gandhaka Rasayana prepared by different media and methods. AYU (An Int Q J Res Ayurveda). 2010; 31(3):382. https://doi.org/10.4103/0974-8520.77155 PMid:22131744 PMCid:PMC3221076 DOI: https://doi.org/10.4103/0974-8520.77155

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines. 2018; 5(3):93. https://doi.org/10.3390/medicines5030093PMid:30149600 PMCid: PMC6165118 DOI: https://doi.org/10.3390/medicines5030093

The Ayurvedic Pharmacopoeia of India. First edition. part 1 volume 3. Government of India, New Delhi, India, p. 142.

Bhavamisra S. Bhavaprakasha nighantu. Pandey.G.S.Dr, editor. Chaukhambha Bharati Academy, Varanasi; 2010. p. 344–356.

Jordan J. Topical NSAIDs for acute musculoskeletal pain in adults. Vol. 94, American Family Physician. American Academy of Family Physicians; 2016. p. 23.

Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K, et al. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Vol. 119, Brain Research Bulletin. Elsevier Inc.; 2015. p. 1–11. https://doi org/10.1016/j.brainresbull.2015.09.002 PMid:26361743 DOI: https://doi.org/10.1016/j.brainresbull.2015.09.002

Balasubramanian K, Evangelopoulos M, Brown BS, Parodi A, Celia C, Yazdi IK, et al. Ghee butter as a therapeutic delivery system. J Nanosci Nanotechnol. 2017; 17(2):977–82. https://doi.org/10.1166/jnn.2017.12623 PMid:29671486 DOI: https://doi.org/10.1166/jnn.2017.12623

Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Vol. 146, Life Sciences. Elsevier Inc.; 2016. p. 201–13. https://doi.org/10.1016/j.lfs.2016.01.017 PMid:26775565 DOI: https://doi.org/10.1016/j.lfs.2016.01.017

Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. Vol. 17, International Journal of Molecular Sciences. MDPI AG; 2016. https://doi.org/10.3390/ijms1 7020160 PMid:26901191 PMCid:PMC4783894 DOI: https://doi.org/10.3390/ijms17020160

Kaiyadeva, Kaiyadeva Nighantu, Edited by P. V. Sharma and Guruprasad Sharma, Chaukhambha Orientatia,Varanasi,1st edition, 1979, p. 26-27.

Vaidya yadavaji trikamji ,Charaka Samhita by Agnivesa, Ayurveda Deepikatika of chakrapani, chaukhambha krishnadas academy, Varanasi, chikistasthan; 2013, verse 6, p.540

Pt.Hari Sadasiva Sastri.P, Ashtanga hrudaya of Acharya Vagbhata with Sarvangasundara of Arunadatta and Ayurveda rasayana of Hemadri from Chaukhambha Sanskrit sansthan, varanasi, sutrasthana, 2010, ch 1, verse 15, p. 11.

Vaidya yadavaji trikamji, Charaka Samhita by Agnivesa, Ayurveda Deepikatika of chakrapani, chaukhambha krishnadas academy, Varanasi, chikitsasthan. 2013, verse 8, p. 483.

Pt. Hari Sadasiva Sastri P, Ashtanga hrudaya of Acharya Vagbhata with Sarvangasundara of Arunadatta and Ayurveda rasayana of Hemadri from Chaukhambha Sanskrit sansthan, Varanasi, sutrasthana, 2010, ch 10, verse 15, p. 176.

Pt. Hari Sadasiva Sastri P, Ashtanga hrudaya, of Acharya Vagbhata with Sarvangasundara of Arunadatta and Ayurveda rasayana of Hemadri from Chaukhambha Sanskrit sansthan, Varanasi, sutrasthana, 2010, ch.1, verse 18, p. 12

Pt. Hari Sadasiva Sastri P, Ashtanga hrudaya of Acharya Vagbhata with Sarvangasundara of Arunadatta and Ayurveda rasayana of Hemadri from Chaukhambha Sanskrit sansthan sutrasthana, Varanasi, sutrasthana, 2010, ch 10, verse 1, p. 174.

Pt. Hari Sadasiva Sastri P, Ashtanga hrudaya of Acharya Vagbhata with Sarvangasundara of Arunadatta and Ayurvedar asayana of Hemadri from Chaukhambha Sanskrit sansthan sutrasthana, Varanasi, sutrasthana, 2010, ch 11, verse 31, p. 187.

Vaidya yadavaji trikamji, Charaka Samhita by Agnivesa, Ayurveda Deepikatika of chakrapani, chaukhambha krishnadas academy, Varanasi, chikitsasthan; 2013, ch 7, verse 9, p. 450.

Chen KC, Lee WY, Chen HY, Chen CYC. In silico investigation of potential mTOR inhibitors from traditional chinese medicine for treatment of Leigh syndrome. Biomed Res Int. 2014; 2014. https://doi.org/10.1155/2014/139492 PMid:25045657 PMCid:PMC4090453 DOI: https://doi.org/10.1155/2014/139492

Laplante M, Sabatini DM. MTOR signaling in growth control and disease. Vol. 149, Cell. 2012. p. 274–93. https://doi.org/10.1016/j.cell.2012.03.017 PMid:22500797 PMCid:PMC3331679 DOI: https://doi.org/10.1016/j.cell.2012.03.017

Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008; 1(1–4):27–36. https://doi.org/10.1007/s12154-008-0003-5 PMid:19568796 PMCid:PMC2698317 DOI: https://doi.org/10.1007/s12154-008-0003-5

Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, et al. MTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013; 342(6165):1524–8. https://doi.org/10.1126/science.1244360 PMid:24231806 PMCid:PMC4055856 DOI: https://doi.org/10.1126/science.1244360

Arivudainambi USE, Anand TD, Shanmugaiah V, Karunakaran C, Rajendran A. Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol. 2011; 61(3):340–5. https://doi.org/10.1111/j.1574-695X.2011.00780.x PMid:21219448 DOI: https://doi.org/10.1111/j.1574-695X.2011.00780.x

Nagarsekar KS, Nagarsenker MS, Kulkarni SR. Evaluation of composition and antimicrobial activity of supercritical fluid extract of leaves of Vitex negundo. Indian J Pharm Sci. 2010; 72(5):641–3. https://doi.org/10.4103/0250-474X.78537 PMid:21695000 PMCid:PMC3116313 DOI: https://doi.org/10.4103/0250-474X.78537

Panda SK, Mohanta YK, Padhi L, Park YH, Mohanta TK, Bae H. Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules. 2016; 21(3). https://doi.org/10.3390/molecules21030293 PMid:26985889 PMCid:PMC6274442 DOI: https://doi.org/10.3390/molecules21030293

Gupta VK, Shukla C, Bisht GRS, Saikia D, Kumar S, Thakur RL. Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay. Lett Appl Microbiol. 2011; 52(1):33–40. https://doi.org/10.1111/j.1472-765X.2010.02963.x PMid:21114505 DOI: https://doi.org/10.1111/j.1472-765X.2010.02963.x

Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, et al. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules. 2011; 16(8):6667–76. https://doi.org/10.3390/molecules16086667 PMid:25134770 PMCid:PMC6264443 DOI: https://doi.org/10.3390/molecules16086667

Chen J, Zhong J, Liu Y, Huang Y, Luo F, Zhou Y, et al. Purified vitexin compound 1, a new neolignan isolated compound, promotes PUMA-dependent apoptosis in colorectal cancer. Cancer Med. 2018; 7(12):6158–69. https://doi.org/10.1002/cam4.1769 PMid:30402948 PMCid:PMC6308053 DOI: https://doi.org/10.1002/cam4.1769

Zhou YJ, Yiliang EL, Cao JG, Zeng GY, Shen C, Li YL, et al. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth. Clin Cancer Res. 2009; 15(16):5161–9. https://doi.org/10.1158/1078-0432. CCR-09-0661 PMid:19671865 PMCid:PMC2752044 DOI: https://doi.org/10.1158/1078-0432.CCR-09-0661

Liu N, Wang KS, Qi M, Zhou YJ, Zeng GY, Tao J, et al. Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels. J Exp Clin Cancer Res [Internet]. 2018; 37(1):269. [cited 2019 Nov 17] Available from: https://jeccr.biomedcentral.com/articles/10.1186/s13046-018-0897-x https://doi.org/10.1186/s13046-018-0897-x PMid:30400954 PMCid:PMC6219156 DOI: https://doi.org/10.1186/s13046-018-0897-x

Deng J, Zhang Y, Tan Z. Proliferation and apoptosis of choriocarcinoma cell JEG-3 induced by VB2 and its in vitro mechanism. J Cent South Univ Medical Sci. 2013; 38(5):476–82.

Kadir FA, Kassim NM, Abdulla MA, Yehye WA. PASS-predicted Vitex negundo activity: Antioxidant and antiproliferative properties on human hepatoma cells-an in vitro study. BMC Complement Altern Med. 2013; 13. https://doi.org/10.1186/1472-6882-13-343 PMid:24305067 PMCid:PMC4235047 DOI: https://doi.org/10.1186/1472-6882-13-343

Sahare KN, Singh V. Antifilarial activity of ethyl acetate extract of Vitex negundo leaves in vitro. Asian Pac J Trop Med. 2013; 6(9):689–92. https://doi.org/10.1016/S1995- 7645(13)60119-4 PMid:23827144 DOI: https://doi.org/10.1016/S1995-7645(13)60119-4

Rana G. Inhibition efficiency of a newly isolated flavonoid compound from Vitex negundo L. leaves against cattle-endosymbiont Setaria cervi: Phytomedicine for lymphatic filariasis. Parasite Epidemiol Control. 2018; 3(2):88–95. https://doi.org/10.1016/j.parepi.2018.03.002 PMid:29988277 PMCid:PMC6011809 DOI: https://doi.org/10.1016/j.parepi.2018.03.002

Sharma RD, Veerpathran AR, Dakshinamoorthy G, Sahare KN, Goswami K, Reddy MVR. Possible implication of oxidative stress in anti filarial effect of certain traditionally used medicinal plants in vitro against Brugia malayi microfilariae. Pharmacognosy Res. 2010; 2(6):350–4. https://doi.org/10.4103/0974-8490.75453 PMid:21713137 PMCid:PMC3111693 DOI: https://doi.org/10.4103/0974-8490.75453

Ladda PL, Magdum CS. Antitubercular Activity and Isolation of Chemical Constituents from plant Vitex negundo Linn. Iran J Pharm Res IJPR [Internet]. 2018; 17(4):1353–60. [cited 2019 Nov 17] Available from: http://www.ncbi.nlm.nih.gov/pubmed/30568694

Motamedi H, Darabpour E, Gholipour M, Seyyed Nejad SM. In vitro assay for the anti-brucella activity of medicinal plants against tetracycline-resistant Brucella melitensis. J Zhejiang Univ Sci B. 2010; 11(7):506–11. https://doi.org/10.1631/jzus.B0900365 PMid:20593515 PMCid:PMC 2897020 DOI: https://doi.org/10.1631/jzus.B0900365

Mohd Abd Razak MR, Afzan A, Ali R, Amir Jalaluddin NF, Wasiman MI, Shiekh Zahari SH, et al. Effect of selected local medicinal plants on the asexual blood stage of chloroquine resistant Plasmodium falciparum. BMC Complement Altern Med [Internet]. 2014; 14(1):492. [cited 2019 Nov 17] Available from: https://bmccomplementalternmed. biomedcentral.com/articles/10.1186/1472-6882-14-492 https://doi.org/10.1186/1472-6882-14-492 PMid:25510573 PMCid:PMC4300612 DOI: https://doi.org/10.1186/1472-6882-14-492

Mishra S, Pani S, Sahoo S. Anti-nephrotoxic activity of some medicinal plants from tribal rich pockets of Odisha. Pharmacognosy Res. 2014; 6(3):210–7. https://doi.org/10.4103/0974-8490.132598 PMid:25002801 PMCid: PMC4080501 DOI: https://doi.org/10.4103/0974-8490.132598

Shoaib M, Shah SWA, Ali N, Shah I, Ullah S, Ghias M, et al. Scientific investigation of crude alkaloids from medicinal plants for the management of pain. BMC Complement Altern Med. 2016; 16(1). https://doi.org/10.1186/s12906-016-1157-2 PMid:27296395 PMCid:PMC4906632 DOI: https://doi.org/10.1186/s12906-016-1157-2

Talekar YP, Apte KG, Paygude SV, Tondare PR, Parab PB. Studies on wound healing potential of polyherbal formulation using in vitro and in vivo assays. J Ayurveda Integr Med. 2017; 8(2):73–81. https://doi.org/10.1016/j.jaim.2016.11.007 PMid:28601354 PMCid:PMC5497006 DOI: https://doi.org/10.1016/j.jaim.2016.11.007

Rooban BN, Sasikala V, Sahasranamam V, Abraham A. Analysis on the alterations of lens proteins by Vitex negundo in selenite cataract models. Mol Vis. 2011; 17:1239–48.

Nagarsekar KS, Nagarsenker MS, Kulkarni SR. Antioxidant and antilipid peroxidation potential of supercritical fluid extract and ethanol extract of leaves of Vitex negundo Linn. Indian J Pharm Sci. 2011; 73(4):422–9.

Kadir FA, Kassim NM, Abdulla MA, Yehye WA. Hepatoprotective role of ethanolic extract of Vitex negundo in thioacetamide-induced liver fibrosis in male rats. Evidence-based Complement Altern Med. 2013; 2013. https://doi.org/10.1155/2013/739850 PMid:23762157 PMCid:PMC3671533 DOI: https://doi.org/10.1155/2013/739850

Kadir FA, Kassim NM, Abdulla MA, Yehye WA. Effect of oral administration of ethanolic extract of Vitex negundo on thioacetamide-induced nephrotoxicity in rats. BMC Complement Altern Med. 2013; 13. https://doi.org/10.1186/1472-6882-13-294 PMid:24499255 PMCid: PMC4028978 DOI: https://doi.org/10.1186/1472-6882-13-294

Jivrajani M, Ravat N, Anandjiwala S, Nivsarkar M. Antiestrogenic and anti-inflammatory potential of n -Hexane fraction of Vitex negundo Linn leaf extract: A probable mechanism for blastocyst implantation failure in Mus musculus. Int Sch Res Not. 2014; 2014:1–8. https://doi.org/10.1155/2014/241946 PMid:27351007 PMCid:PMC 4897515 DOI: https://doi.org/10.1155/2014/241946

Bhatt N, Ali M, Shukla V, Dave A. A clinical study of Nirgundi Ghana Vati and Matra Basti in the management of Gridhrasi with special reference to sciatica. AYU (An Int Q J Res Ayurveda). 2010; 31(4):456. https://doi.org/10.4103/0974-8520.82042 PMid:22048539 PMCid:PMC3202251 DOI: https://doi.org/10.4103/0974-8520.82042

Hazarika S, Dhiman S, Rabha B, Bhola R, Singh L. Repellent activity of some essential oils against Simulium species in India. J Insect Sci. 2012; 12(5):1–9. https://doi.org/10.1673/031.012.0501 PMid:22943569 PMCid:PMC346 5923 DOI: https://doi.org/10.1673/031.012.0501

Sogame M, Naraki Y, Sasaki T, Seki M, Yokota K, Masada S, et al. Quality assessment of medicinal product and dietary supplements containing Vitex agnuscastus by HPLC fingerprint and quantitative analyses. Chem Pharm Bull (Tokyo). 2019; 67(6):527–33. https://doi.org/10.1248/cpb.c18-00725 PMid:31155557 DOI: https://doi.org/10.1248/cpb.c18-00725

Fan Q, Liu Y, Kulakowski D, Chen S, Friesen JB, Pauli GF, et al. Countercurrent separation assisted identification of two mammalian steroid hormones in Vitex negundo. J Chromatogr A. 2018; 1553:108–15. https://doi.org/10.1016/j.chroma.2018.04.033 PMid:29699871 PMCid:PMC6365631 DOI: https://doi.org/10.1016/j.chroma.2018.04.033

Shah S, Dhanani T, Kumar S. Validated HPLC method for identification and quantification of p-hydroxy benzoic acid and agnuside in Vitex negundo and Vitex trifolia. J Pharm Anal. 2013; 3(6):500–8. https://doi.org/10.1016/j.jpha.2013.09.008 PMid:29403861 PMCid:PMC5761016 DOI: https://doi.org/10.1016/j.jpha.2013.09.008

Ito J, Hara K, Someya T, Myoda T, Sagane Y, Watanabe T, et al. Data on the inhibitory effect of traditional plants from Sri Lanka against tyrosinase and collagenase. Data Br. 2018; 20:573–6. https://doi.org/10.1016/j.dib.2018.08.143 PMid:30191170 PMCid:PMC6126212 DOI: https://doi.org/10.1016/j.dib.2018.08.143

Liu L, Wang J, Yin M, Guo X, Cai Y, Du N, et al. Development and characterization of EST-SSR markers for Vitex negundo var. heterophylla (Lamiaceae). Appl Plant Sci. 2019; 7(1). https://doi.org/10.1002/aps3.1209 PMid:30693155 PMCid:PMC6342176 DOI: https://doi.org/10.1002/aps3.1209

Gautam K, Kumar P, Poonia S. Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti. J Vector Borne Dis. 2013; 50(3):171–8.