Evaluation of Phytochemicals and Anticancer Potential of C. maxima: An In-silico Molecular Docking Approach
DOI:
https://doi.org/10.18311/jnr/2022/29923Keywords:
Anticancer, Cucurbita maxima, FGFR1, Molecular Docking, p53Abstract
Cucurbita maxima belongs to the Cucurbitaceae family and has many traditional medicinal properties claimed that are used in food. The various parts of the Cucurbita maxima are reported to have versatile activities such as antimicrobial, antioxidant, anti-insecticidal, anti-inflammatory and anticancer properties. The current study was designed to evaluate the phytoconstituent profiles of C. maxima pulp, peel and seed extracts (aqueous and methanol) extracted at different temperatures (40 °C, 50 °C, 60 °C) and time (1 and 2 hr). For these extracts, qualitative and quantitative determination were performed, and the aqueous seed extract of C. maxima at 50 °C for 2 hours had higher phytoconstituents, which was further taken for the GCMS analysis. Furthermore, the top hit compounds from the GCMS such as Guanosine (CAS), 8,11,14-Eicosatrienoic acid, Farnesol and 13-Tetradecenal were docked against p53 Y220S mutant (6SI2), and Fibroblast growth factor receptor 1 protein (FGFR1) (4V05). The results revealed that Guanosine with p53 and 8,11,14-Eicosatrienoic acid with FGFR1 have good binding affinities of -7.2 and -6.3 kcal/mol respectively. Conclusively, the top compounds from the aqueous seed extract of C. maxima extracted at 50 °C for 2 hours have significant breast cancer activity and it has to be further taken to in vitro and in vivo studies in the future.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 TANBIO R and D Solution TanBio TanBio
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-05-13
Published 2022-12-16
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424.https:// doi.org/10.3322/caac.21492 DOI: https://doi.org/10.3322/caac.21492
Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, Hayee B, Lomer MCE, Parkes GC, Selinger C, Barrett KJ, Davies RJ, Bennett C, Gittens S, Dunlop MG, Faiz O, Fraser A, Garrick V, Johnston PD, Parkes M, Sanderson J, Terry H; IBD guidelines eDelphi consensus group, Gaya DR, Iqbal TH, Taylor SA, Smith M, Brookes M, Hansen R, Hawthorne AB. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019; 68(Suppl 3):s1-s106.https://doi. org/10.1136/gutjnl-2019-318484 DOI: https://doi.org/10.1136/gutjnl-2019-318484
Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012; 9(3):193-9. https://doi.org/10.7150/ijms.3635 DOI: https://doi.org/10.7150/ijms.3635
Naidu MU, Ramana GV, Rani PU, Mohan IK, Suman A, Roy P. Chemotherapy-induced and/or radiation therapy-induced oral mucositis - complicating the treatment of cancer. Neoplasia. 2004; 6(5):423-31. https://doi.org/10.1593/ neo.04169 DOI: https://doi.org/10.1593/neo.04169
Malvia S, Bagadi SA, Dubey US, Saxena S. Epidemiology of breast cancer in Indian women. Asia Pac J Clin Oncol. 2017; 13(4):289-295. https://doi.org/10.1111/ajco.12661 DOI: https://doi.org/10.1111/ajco.12661
Agarwal G, Ramakant P. Breast Cancer Care in India: The Current Scenario and the Challenges for the Future. Breast Care (Basel). 2008; 3(1):21-27. https://doi. org/10.1159/000115288 DOI: https://doi.org/10.1159/000115288
Unger-Saldana K. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J Clin Oncol. 2014; 5(3):465-77. https://doi.org/10.5306/wjco. v5.i3.465 DOI: https://doi.org/10.5306/wjco.v5.i3.465
Greenberg CC, Lipsitz SR, Hughes ME, Edge SB, Theriault R, Wilson JL, Carter WB, Blayney DW, Niland J, Weeks JC. Institutional variation in the surgical treatment of breast cancer: A study of the NCCN. Ann Surg. 2011; 254(2):339- 45.https://doi.org/10.1097/sla.0b013e3182263bb0 DOI: https://doi.org/10.1097/SLA.0b013e3182263bb0
Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010; 44(5):479-96. https://doi. org/10.3109/10715761003667554 DOI: https://doi.org/10.3109/10715761003667554
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules. 2019; 9(11):735. https://doi.org/10.3390/biom9110735 DOI: https://doi.org/10.3390/biom9110735
M JR, Ramalingam PS, Mathavan S, B R D Yamajala R, Moparthi NR, Kurappalli RK, Manyam RR. Synthesis, in vitro and structural aspects of cap substituted Suberoylanilide hydroxamic acid analogs as potential inducers of apoptosis in Glioblastoma cancer cells via HDAC /microRNA regulation. Chem Biol Interact. 2022; 109876. https://doi. org/10.1016/j.cbi.2022.109876 DOI: https://doi.org/10.1016/j.cbi.2022.109876
Mekala JR, Ramalingam P, Moparthi NR, Kutala VK. ROS Modulatory Role of HDAC Inhibitors in Cancer Cells. In: Chakraborti S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. 2022. https://doi.org/10.1007/978-981-16-1247-3_250-1 DOI: https://doi.org/10.1007/978-981-16-5422-0_250
Purushothaman B, PrasannaSrinivasan R, Suganthi P, Ranganathan B, Gimbun J, and Shanmugam K. A Comprehensive Review on Ocimum basilicum. Journal of Natural Remedies. 2018; 18(3):71-85. https://doi. org/10.18311/jnr/2018/21324 DOI: https://doi.org/10.18311/jnr/2018/21324
Saranya, Kalimuthu J, Balakrishnan P, Ramalingam PS, Parthasarathi S, Ganesan B, Kaliyaperumal R, Ranganathan B and Shanmugam S. Isolation and characterisation of cellulolytic activity of bacteria and fungi from the soil of paper recycling unit at Periyar Maniammai University. Indo Ame J. Pharma Res. 2017; 7(6):8253-64.
Ramalingam PS, Sagayaraj M, Ravichandiran P, Balakrishnanan P, Nagarasan S, Shanmugam K. Lipid peroxidation and anti-obesity activity of Nigella sativa seeds. W. J. Pharm. Res. 2017; 6(10):882-92.https://doi.org/10.20959/ wjpr201710-9389 DOI: https://doi.org/10.20959/wjpr201710-9389
Balakrishnan P, Kumar GS, Ramalingam PS, Nagarasan S, Murugasan V, Shanmugam K. Distinctive pharmacological activities of Eclipta alba and it’s Coumestan Wedolactone. Indo Ame. J. Pharm. Res. 2018; 5(4):2996-3002.
Chomicki G, Schaefer H, Renner SS. Origin and domestication of Cucurbitaceae crops: Insights from phylogenies, genomics and archaeology. New Phytol. 2020; 226(5):1240- 1255. https://doi.org/10.1111/nph.16015 DOI: https://doi.org/10.1111/nph.16015
Salehi B, Capanoglu E, Adrar N, Catalkaya G, Shaheen S, Jaffer M, Giri L, Suyal R, Jugran AK, Calina D, Docea AO, Kamiloglu S, Kregiel D, Antolak H, Pawlikowska E, Sen S, Acharya K, Selamoglu Z, Sharifi-Rad J, Martorell M, Rodrigues CF, Sharopov F, Martins N, Capasso R. Cucurbits Plants: A Key Emphasis to Its Pharmacological Potential. Molecules. 2019; 24(10):1854. https://doi.org/10.3390/molecules24101854 DOI: https://doi.org/10.3390/molecules24101854
Wahid S, Alqahtani A, Alam Khan R. Analgesic and antiinflammatory effects and safety profile of Cucurbita maxima and Cucumis sativus seeds. Saudi J Biol Sci. 2021; 28(8):4334-4341. https://doi.org/10.1016/j.sjbs.2021.04.020 DOI: https://doi.org/10.1016/j.sjbs.2021.04.020
Steward WP, Brown K. Cancer chemoprevention: A rapidly evolving field. Br J Cancer. 2013; 109(1):1-7. https://doi. org/10.1038/bjc.2013.280 DOI: https://doi.org/10.1038/bjc.2013.280
Purushothaman B, Suganthi N, Jothi A, Shanmugam K. Molecular Docking Studies of potential anticancer agents from Ocimum basilicum L. against human colorectal cancer regulating genes: An in silico approach. Research J. Pharm. and Tech. 2019; 12(7):3423-7. https://doi.org/10.5958/0974- 360X.2019.00579.1 DOI: https://doi.org/10.5958/0974-360X.2019.00579.1
Purushothaman B, Suganthi N and Shanmugam K. Qualitative and Quantitative Determination of Various Extracts of Ocimum basilicum L. Leaves. J. Nat. Rem. 2020; 20(1):53-60. https://doi.org/10.18311/jnr/2020/24113 DOI: https://doi.org/10.18311/jnr/2020/24113
Sethuraman J, Nehru H, Shanmugam K, Balakrishnanan P. Evaluation of potent phytochemicals and antidiabetic activity of Ficus racemose L. W. J. Pharm. Res. 2017; 6(15):909-20.
Mekala JR, Kurappalli RK, Ramalingam P, Moparthi NR. N-acetyl l-aspartate and Triacetin modulate tumor suppressor MicroRNA and class I and II HDAC gene expression induce apoptosis in Glioblastoma cancer cells in vitro. Life Sci. 2021; 286:120024. https://doi.org/10.1016/j. lfs.2021.120024 DOI: https://doi.org/10.1016/j.lfs.2021.120024
Nagarasan S and Boominathan M. In vitro studies on the primitive pharmacological activities of Adhatoda vasica. Int. J. of Life Sciences. 2016; 4(3):379-85.
Nagarasan S, Boominathan M. Perspective pharmacological activities of Leucas aspera: An indigenous plant species. Indo Am J Pharm Res. 2016; 6(09):6567.
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel). 2018; 5(3):93. https://doi.org/10.3390/medicines5030093 DOI: https://doi.org/10.3390/medicines5030093
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Scientific World Journal. 2013; 2013:162750. https://doi.org/10.1155/2013/162750 DOI: https://doi.org/10.1155/2013/162750
Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. Biomed Res Int. 2013; 2013:915436. https://doi.org/10.1155/2013/915436 DOI: https://doi.org/10.1155/2013/915436
Sharma L, Dubey A, Gupta PR, Agrawal A. Androgenetic alopecia and risk of coronary artery disease. Indian Dermatol Online J. 2013; 4(4):283-7. https://doi.org/10.4103/2229- 5178.120638 DOI: https://doi.org/10.4103/2229-5178.120638
Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chin Med. 2018; 13:20. https://doi.org/10.1186/s13020- 018-0177-x DOI: https://doi.org/10.1186/s13020-018-0177-x
Chaves JO, de Souza MC, da Silva LC, Lachos-Perez D, Torres-Mayanga PC, Machado APDF, Forster-Carneiro T, Vazquez-Espinosa M, Gonzalez-de-Peredo AV, Barbero GF, Rostagno MA. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front Chem. 2020; 8:507887. https://doi.org/10.3389/fchem.2020.507887 DOI: https://doi.org/10.3389/fchem.2020.507887
Srinivas C, Swathi V, Priyanka C, Anjana Devi T, Subba Reddy BV, Janaki Ramaiah M, Bhadra U, Bhadra MP. Novel SAHA analogues inhibit HDACs, induce apoptosis and modulate the expression of microRNAs in hepatocellular carcinoma. Apoptosis. 2016; 21(11):1249-1264. https://doi. org/10.1007/s10495-016-1278-6 DOI: https://doi.org/10.1007/s10495-016-1278-6
Patel N, Garikapati KR, Ramaiah MJ, Polavarapu KK, Bhadra U, Bhadra MP. miR-15a/miR-16 induces mitochondrial dependent apoptosis in breast cancer cells by suppressing oncogene BMI1. Life Sci. 2016; 164:60-70.https://doi. org/10.1016/j.lfs.2016.08.028 DOI: https://doi.org/10.1016/j.lfs.2016.08.028
Ramaiah MJ, Tangutur AD, Manyam RR. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 2021; 277:119504. https://doi. org/10.1016/j.lfs.2021.119504 DOI: https://doi.org/10.1016/j.lfs.2021.119504