Tabernaemontana divaricata: A Herbal Panacea

Jump To References Section

Authors

  • Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida, Uttar Pradesh - 201306 ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida, Uttar Pradesh - 201306 ,IN
  • Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-II, Greater Noida, Uttar Pradesh - 201306 ,IN

DOI:

https://doi.org/10.18311/jnr/2022/29962

Keywords:

Alkaloids, Bioactive Components, Latex, Pharmacological Activity, T. divaricata
Natural remedies

Abstract

Tabernaemontana divaricata (pinwheel flower) is a flowering plant that can grow easily in gardens and along roadsides. This plant can be cultivated in every condition. No specific environmental condition is required for the growth of the plant. Growing evidence suggests that this plant has medicinal benefits for various diseases due to the presence of bioactive components in the plant. The plant is extensively found near Indian heritage to be used for worship. T. divaricata contains major alkaloids like apparicine, conophylline, coronardine, ibogamine, etc., exhibiting pharmacological activities. Their major pharmacological potential is against inflammation, pain, and other diseases. Plants’ major activities, such as anti-diabetic, anti-inflammatory, antibacterial, antifungal, and so on, have been demonstrated by their responsible bioactive compounds. The review is to highlight the researchers’ findings of different medicinal activities in T. divaricata along with the major responsible phytocomponents. There is a lot more scope for further research, which can be extended by the help of this review.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-16

How to Cite

Das, S., Dubey, A., & , D. (2022). <i>Tabernaemontana divaricata</i>: A Herbal Panacea. Journal of Natural Remedies, 22(4), 549–562. https://doi.org/10.18311/jnr/2022/29962

Issue

Section

Short Review
Received 2022-04-12
Accepted 2022-12-15
Published 2022-12-16

 

References

Raj CN, Balasubramaniam A. Pharmacogostic and antimicrobial studies of the leaves of Tabernaemontana divaricata R. br. Pharmacologyonline. 2011; 2:1171-7.

Pushpa B, Latha KP, Vaidya VP, Shruthi A, Shweatha A. Phytochemical analysis and antimicrobial evaluation of leaves extract of Tabernaemontana coronaria. J Chem Pharm Res. 2012; 4:3731-3.

Gopinath SM, Suneetha TB, Mruganka VD, Ananda S. Evaluation of antibacterial activity of Tabernaemontana divaricata (L.) leaves against the causative organisms of bovine mastitis. International Journal of Research in Phytochemistry and Pharmacology. 2011; 1(4):211-3.

Poornima K, Krishnan R, Aswathi KV, Gopalakrishnan VK. Toxicological evaluation of ethanolic extract of Tabernaemontana coronaria (L) R. Br. Asian Pacific Journal of Tropical Disease. 2012; 2:S679-84. https://doi. org/10.1016/S2222-1808(12)60243-6 DOI: https://doi.org/10.1016/S2222-1808(12)60243-6

Konno K. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry. 2011; 72(13):1510-30. https://doi.org/10.1016/j.phytochem.2011.02.016 DOI: https://doi.org/10.1016/j.phytochem.2011.02.016

Agrawal AA, Konno K. Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 2009; 40:311- 31. https://doi.org/10.1146/annurev.ecolsys.110308.120307 DOI: https://doi.org/10.1146/annurev.ecolsys.110308.120307

Ramos MV, Souza DP, Gomes MT, Freitas CD, Carvalho CP, Junior PA, Salas CE. A phytopathogenic cysteine peptidase from latex of wild rubber vine Cryptostegia grandiflora. The Protein Journal. 2014; 33(2):199-209. https://doi. org/10.1007/s10930-014-9551-4 DOI: https://doi.org/10.1007/s10930-014-9551-4

Freitas CD, Silva MZ, Bruno-Moreno F, Monteiro-Moreira AC, Moreira RA, Ramos MV. New constitutive latex osmotin-like proteins lacking antifungal activity. Plant Physiology and Biochemistry. 2015; 96:45-52. https://doi. org/10.1016/j.plaphy.2015.07.012 DOI: https://doi.org/10.1016/j.plaphy.2015.07.012

Yagami T, Sato M, Nakamura A, Komiyama T, Kitagawa K, Akasawa A, Ikezawa Z. Plant defense-related enzymes as latex antigens. Journal of allergy and clinical immunology. 1998; 101(3):379-85. https://doi.org/10.1016/ S0091-6749(98)70251-9 DOI: https://doi.org/10.1016/S0091-6749(98)70251-9

Saha S. Phytochemical screening and Pharmacological Evaluation of the Methanol Extract of Tabernaemontana divaricata leaves.

Taberanaemontana divvarcata. Natural Resource Conservation Service PLANTS Database USDA. Retrieved 7 December 2015.

Lakhey P and Pathak J. 2020. Tabernaemontana divaricata. The IUCN Red List of Threatened Species 2020.

Boligon AA, Piana M, Kubiça TF, Mario DN, Dalmolin TV, Bonez PC, Weiblen R, Lovato L, Alves SH, Campos MM, Athayde ML. HPLC analysis and antimicrobial, antimycobacterial and antiviral activities of Tabernaemontana catharinensis A. DC. Journal of Applied Biomedicine. 2015; 13(1):7-18. https://doi.org/10.1016/j.jab.2014.01.004 DOI: https://doi.org/10.1016/j.jab.2014.01.004

Silveira DA, de Melo AF, Magalhaes PO, Fonseca-Bazzo YM. Tabernaemontana species: Promising sources of new useful drugs. In Studies in Natural Products Chemistry. 2017; 54:227-289. Elsevier. https://doi.org/10.1016/B978-0- 444-63929-5.00007-3 DOI: https://doi.org/10.1016/B978-0-444-63929-5.00007-3

Andrade MT, Lima JA, Pinto AC, Rezende CM, Carvalho MP, Epifanio RA. Indole alkaloids from Tabernaemontana australis (Muell. Arg) Miers that inhibit acetylcholinesterase enzyme. Bioorganic and Medicinal Chemistry. 2005; 13(12):4092-5. https://doi.org/10.1016/j.bmc.2005.03.045 DOI: https://doi.org/10.1016/j.bmc.2005.03.045

Farnsworth NR, Svoboda GH, Blomster RN. Antiviral activity of selected Catharanthus alkaloids. Journal of Pharmaceutical Sciences. 1968; 57(12):2174-5. https://doi. org/10.1002/jps.2600571235 DOI: https://doi.org/10.1002/jps.2600571235

Arens H, Borbe HO, Ulbrich B, Stockigt J. Detection of pericine, a new CNS-active indole alkaloid from Picralima nitida cell suspension culture by opiate receptor binding studies. Planta Medica. 1982; 46(12):210-4. https://doi. org/10.1055/s-2007-971216 DOI: https://doi.org/10.1055/s-2007-971216

Siems WG, Grune T, Beierl B, Zollner H, Esterbauer H. The metabolism of 4-hydroxynonenal, a lipid peroxidation product, is dependent on tumor age in Ehrlich mouse ascites cells. Free Radicals and Aging. 1992; 124-35. https://doi. org/10.1007/978-3-0348-7460-1_13 DOI: https://doi.org/10.1007/978-3-0348-7460-1_13

Fyfe MJ, Loftfield S, Goldman ID. A reduction in energydependent amino acid transport by microtubular inhibitors in ehrlich ascites tumor cells. Journal of Cellular Physiology. 1975; 86(2):201-11. https://doi.org/10.1002/jcp.1040860203 DOI: https://doi.org/10.1002/jcp.1040860203

Ogata T, Li L, Yamada S, Yamamoto Y, Tanaka Y, Takei I, Umezawa K, Kojima I. Promotion of β-cell differentiation by conophylline in fetal and neonatal rat pancreas. Diabetes. 2004; 53(10):2596-602. https://doi.org/10.2337/ diabetes.53.10.2596 DOI: https://doi.org/10.2337/diabetes.53.10.2596

Takatsuna H, Umezawa K. Screening of bioactive metabolites for pancreatic regeneration chemotherapy. Biomedicine and Pharmacotherapy. 2004; 58(10):610-3. https://doi. org/10.1016/j.biopha.2004.10.003 DOI: https://doi.org/10.1016/j.biopha.2004.10.003

Kojima I, Umezawa K. Conophylline: A novel differentiation inducer for pancreatic β cells. The international journal of biochemistry and cell biology. 2006; 38(5-6):923-30. https://doi.org/10.1016/j.biocel.2005.09.019

Atsumi S, Nagasawa A, Koyano T, Kowithayakornd T, Umezawa K. Suppression of TGF-β signaling by conophylline via upregulation of c-Jun expression. Cellular and Molecular Life Sciences CMLS. 2003; 60(11):2516-25. https://doi.org/10.1007/s00018-003-3299-x DOI: https://doi.org/10.1007/s00018-003-3299-x

Gohda J, Inoue JI, Umezawa K. Down-regulation of TNF-α receptors by conophylline in human T-cell leukemia cells. International Journal of Oncology. 2003; 23(5):1373-9. https://doi.org/10.3892/ijo.23.5.1373 DOI: https://doi.org/10.3892/ijo.23.5.1373

Irie T, Kubushiro K, Suzuki K, Tsukazaki K, Umezawa K, Nozawa S. Inhibition of attachment and chemotactic invasion of uterine endometrial cancer cells by a new vinca alkaloid, conophylline. Anticancer Research. 1999; 19(4B):3061-6.

Umezawa K, Taniguchi T, Toi M, Ohse T, Tsutsumi N, Yamamoto T, Koyano T, Ishizuka M. Growth inhibition of K-ras-expressing tumours by a new vinca alkaloid, conophylline, in nude mice. Drugs under Experimental and Clinical Research. 1996; 22(2):35-40.

Taesotikul T, Panthong A, Kanjanapothi D, Verpoorte R, Scheffer JJ. Anti-inflammatory, antipyretic and antinociceptive activities of Tabernaemontana pandacaqui Poir. Journal of Ethnopharmacology. 2003; 84(1):31-5. https:// doi.org/10.1016/S0378-8741(02)00264-7 DOI: https://doi.org/10.1016/S0378-8741(02)00264-7

Taesotikul T, Panthong A, Kanjanapothi D, Verpoorte R, Scheffer JJ. Cardiovascular effects of Tabernaemontana pandacaqui. Journal of Ethnopharmacology. 1989; 27(1- 2):107-19. https://doi.org/10.1016/0378-8741(89)90083-4 DOI: https://doi.org/10.1016/0378-8741(89)90083-4

Taesotikul T, Panthong A, Kanjanapothi D, Verpoorte R, Scheffer JJ. Cardiovascular activity of the crude alkaloidal fraction from Tabernaemontana pandacaqui in the rat. Journal of Ethnopharmacology. 1998; 59(3):131-7. https:// doi.org/10.1016/S0378-8741(97)00116-5 DOI: https://doi.org/10.1016/S0378-8741(97)00116-5

Mehrotra PK, Kamboj VP. Hormonal Profile of Coronaridine Hydrochloride-an Antifertility Agent of Plant Origin1. Planta Medica. 1978; 33(04):345-9. https:// doi.org/10.1055/s-0028-1097389 DOI: https://doi.org/10.1055/s-0028-1097389

Schneider JA, Sigg EB. Neuropharmacological studies on ibogaine, an indole alkaloid with central‐stimulant properties. Annals of the New York Academy of Sciences. 1957; 66(3):765-76. https://doi.org/10.1111/j.1749-6632.1957. tb40765.x DOI: https://doi.org/10.1111/j.1749-6632.1957.tb40765.x

Pace CJ, Glick SD, Maisonneuve IM, He LW, Jokiel PA, Kuehne ME, Fleck MW. Novel iboga alkaloid congeners block nicotinic receptors and reduce drug self-administration. European Journal of Pharmacology. 2004; 492(2-3):159-67. https://doi.org/10.1016/j.ejphar.2004.03.062 DOI: https://doi.org/10.1016/j.ejphar.2004.03.062

Chen G and B Bohner. A study of central nervous system stimulants. The Journal of Pharmacology and Experimental Therapeutics. 1958; 123(3):212-5.

Goutarel R, Gollnhofer O, Sillans R. Pharmacodynamics and therapeutic applications of iboga and ibogaine. Psychedelic Monographs and Essays. 1993; 6:71-111.

Lotsof HS, inventor; Lotsof Howard S. Rapid method for interrupting the narcotic addiction syndrome. United States Patent US. 1985; 4499096.

Pratchayasakul W, Pongchaidecha A, Chattipakorn N, Chattipakorn S. Ethnobotany and ethnopharmacology of Tabernaemontana divaricata. Indian Journal of Medical Research. 2008; 127(4):317-36.

Aceto MD, Bowman ER, Harris LS, May EL. Dependence studies of new compounds in the rhesus monkey and mouse (1991). NIDA Research Monograph. 1992; 119:513-58.

Cappendijk SL, Dzoljic MR. Inhibitory effects of ibogaine on cocaine self-administration in rats. European Journal of Pharmacology. 1993; 241(2-3):261-5. https://doi. org/10.1016/0014-2999(93)90212-Z DOI: https://doi.org/10.1016/0014-2999(93)90212-Z

Glick SD, Rossman K, Rao NC, Maisonneuve IM, Carlson JN. Effects of ibogaine on acute signs of morphine withdrawal in rats: Independence from tremor. Neuropharmacology. 1992; 31(5):497-500. https://doi. org/10.1016/0028-3908(92)90089-8 DOI: https://doi.org/10.1016/0028-3908(92)90089-8

Glick SD, Rossman K, Steindorf S, Maisonneuve IM, Carlson JN. Effects and aftereffects of ibogaine on morphine selfadministration in rats. European Journal of Pharmacology. 1991; 195(3):341-5. https://doi.org/10.1016/0014- 2999(91)90474-5 DOI: https://doi.org/10.1016/0014-2999(91)90474-5

Glick SD, Maisonneuve IM. Mechanisms of antiaddictive actions of ibogaine a. Annals of the New York Academy of Sciences. 1998; 844(1):214-26. https://doi. org/10.1111/j.1749-6632.1998.tb08237.x DOI: https://doi.org/10.1111/j.1749-6632.1998.tb08237.x

Sershen H, Hashim A, Lajtha A. Ibogaine reduces preference for cocaine consumption in C57BL/6By mice. Pharmacology Biochemistry and Behavior. 1994; 47(1):13- 9. https://doi.org/10.1016/0091-3057(94)90105-8 DOI: https://doi.org/10.1016/0091-3057(94)90105-8

Sershen H, Hashim A, Lajtha A. Ibogaine and cocaine abuse: pharmacological interactions at dopamine and serotonin receptors. Brain research bulletin. 1997; 42(3):161-8. https://doi.org/10.1016/S0361-9230(96)00296-1 DOI: https://doi.org/10.1016/S0361-9230(96)00296-1

Fierascu RC, Ortan A, Fierascu IC, Fierascu I. In vitro and in vivo evaluation of antioxidant properties of wild-growingplants. A short review. Current Opinion in Food Science. 2018; 24:1-8. https://doi.org/10.1016/j.cofs.2018.08.006 DOI: https://doi.org/10.1016/j.cofs.2018.08.006

Toghueo RM, Boyom FF. Endophytes from ethno-pharmacological plants: Sources of novel antioxidants-A systematic review. Biocatalysis and Agricultural Biotechnology. 2019; 22:101430. https://doi.org/10.1016/j.bcab.2019.101430 DOI: https://doi.org/10.1016/j.bcab.2019.101430

Shori AB. Screening of antidiabetic and antioxidant activities of medicinal plants. Journal of Integrative Medicine. 2015; 13(5):297-305. https://doi.org/10.1016/S2095- 4964(15)60193-5 DOI: https://doi.org/10.1016/S2095-4964(15)60193-5

Jain S, Jain A, Jain N, Jain DK, Balekar N. Phytochemical investigation and evaluation of in vitro free radical scavenging activity of Tabernaemontana divaricata Linn. Natural Product Research. 2010; 24(3):300-4. https://doi. org/10.1080/14786410903237123 DOI: https://doi.org/10.1080/14786410903237123

Wasupongpun W, Premkaisorn P. Evaluation of Antioxidant Activity of Eleven Thai Medicinal Herbs. Sci. J. 2010; 26:29- 38.

Rumzhum NN, Rahman MM, Kazal MK. Antioxidant and cytotoxic potential of methanol extract of Tabernaemontana divaricata leaves. International Current Pharmaceutical Journal. 2012; 1(2):27-31. https://doi.org/10.3329/icpj. v1i2.9446

Venkatachalapathi S, Saranya C, Ravi S. Isolation and Characterization of Bio Active Compounds from Tabernaemontana divaricata and a Study of its Antioxidant and Antibacterial Activity. Indo Am. J. Pharm. Res. 2014; 4(5):2401-6.

Khan MS. Gastroprotective effect of Tabernaemontana divaricata (Linn.) R. Br. Flower methanolic extract in wistar rats. British Journal of Pharmaceutical Research. 2011; 1(3):88. https://doi.org/10.9734/BJPR/2011/347

Choudhary RK, Saroha AE, Swarnkar PL. Screening of endogenous antioxidants in some medicinal plants. Toxicological and Environmental Chemistry. 2011; 93(4):656-64. https://doi.org/10.1080/02772248.2010.5511 22 DOI: https://doi.org/10.1080/02772248.2010.551122

Mueller M, Janngeon K, Puttipan R, Unger FM, Viernstein H, Okonogi S. Anti-inflammatory, antibacterial, and antioxidant activities of Thai medicinal plants. Int. J. Pharm. Pharm. Sci. 2015; 7(11):123-8.

Anbukkarasi M, Thomas PA, Sheu JR, Geraldine P. In vitro antioxidant and anticataractogenic potential of silver nanoparticles biosynthesized using an ethanolic extract of Tabernaemontana divaricata leaves. Biomedicine and Pharmacotherapy. 2017; 91:467-75. https://doi. org/10.1016/j.biopha.2017.04.079 DOI: https://doi.org/10.1016/j.biopha.2017.04.079

Anbukkarasi M, Sundararajan M, Venkadeswaran K, Ruban VV, Anand T, Geraldine P. Antihypercholesterolemic, antioxidative and anti-inflammatory potential of an extract of the plant Tabernaemontana divaricata in experimental rats fed an atherogenic diet. Biocatalysis and Agricultural Biotechnology. 2019; 19:101115. https://doi.org/10.1016/j. bcab.2019.101115 DOI: https://doi.org/10.1016/j.bcab.2019.101115

Kalaimagal C. In vitro antioxidant activity in ethanolic leaf extract of (L.). International Journal of Bio-Pharma Research. 2019; 8(6):2602-6.

Santhi R, Annapurani S. Preliminary evaluation of In vitro and In vivo antioxidative and antitumor activities of flavonoid extract of Tabernaemontana divaricata leaves in Ehrlich’s lymphoma and Dalton’s lymphoma ascites model. Journal of Cancer Research and Therapeutics. 2020; 16(1):78. https://doi.org/10.4103/jcrt.JCRT_445_17 DOI: https://doi.org/10.4103/jcrt.JCRT_445_17

Khongsombat O. Inhibitory effects of Tabernaemontana divaricata root extract on oxidative stress and neuronal loss induced by amyloid β25-35 peptide in mice. Journal of Traditional and Complementary Medicine. 2018; 8(1):184- 9. https://doi.org/10.1016/j.jtcme.2017.05.009 DOI: https://doi.org/10.1016/j.jtcme.2017.05.009

Elgorashi EE, McGaw LJ. African plants with in vitro antiinflammatory activities: A review. South African Journal of Botany. 2019; 126:142-69. https://doi.org/10.1016/j. sajb.2019.06.034 DOI: https://doi.org/10.1016/j.sajb.2019.06.034

Calixto JB, Otuki MF, Santos AR. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor κ B (NF-κB). Planta Medica. 2003; 69(11):973-83. https://doi. org/10.1055/s-2003-45141 DOI: https://doi.org/10.1055/s-2003-45141

Jain S, Sharma P, Ghule S, Jain A, Jain N. In vivo antiinflammatory activity of Tabernaemontana divaricata leaf extract on male albino mice. Chinese Journal of Natural Medicines. 2013; 11(5):472-6. https://doi.org/10.1016/ S1875-5364(13)60086-2 DOI: https://doi.org/10.1016/S1875-5364(13)60086-2

Jolly C, Thambi P, Kuzhivelil B, Sabu M. Antioxidant and anti-inflammatory activities of the flowers of Tabernaemontana coronaria (L) R. Br. Indian J. Pharm. Sci. 2006; 68:352.https://doi.org/10.4103/0250-474X.26675 DOI: https://doi.org/10.4103/0250-474X.26675

Kanthlal SK, Suresh V, Arunachalam G, Frank PR, Kameshwaran S. In vivo evaluation of analgesic and antipyretic activity of aerial parts of Tabernaemontana divaricata in experimental animal models. Pharmacologyonline. 2011; 3:1127-33.

Bhadane BS, Patil MP, Maheshwari VL, Patil RH. Ethnopharmacology, phytochemistry, and biotechnological advances of family Apocynaceae: A review. Phytotherapy Research. 2018; 32(7):1181-210. https://doi.org/10.1002/ ptr.6066 DOI: https://doi.org/10.1002/ptr.6066

Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. African Journal of Biotechnology. 2008; 7(12). https://doi.org/10.5897/ AJB07.613 DOI: https://doi.org/10.5897/AJB07.613

Marinho FF, Simoes AO, Barcellos T, Moura S. Brazilian Tabernaemontana genus: Indole alkaloids and phytochemical activities. Fitoterapia. 2016; 114:127-37. https://doi. org/10.1016/j.fitote.2016.09.002 DOI: https://doi.org/10.1016/j.fitote.2016.09.002

Singh B, A Sharma R, K Vyas G. Antimicrobial, antineoplastic and cytotoxic activities of indole alkaloids from Tabernaemontana divaricata (L.) R. Br. Current Pharmaceutical Analysis. 2011; 7(2):125-32. https://doi. org/10.2174/157341211795684844 DOI: https://doi.org/10.2174/157341211795684844

Kumari S, Mazumder A, Bhattacharya S. Pharmacognostical and antimicrobial studies of the stem of Tabernaemontana divaricata Linn. Int. J. Pharm. Sci. 2015; 7:101-4.

Rakkimuthu R, Nithiyakamatchi R, Sathishkumar P, Ananda Kumar AM, Sowmiya D. In vitro antifungal activity of formulated floral extracts against Malassezia furfur. Int. J. Anal. Exp. Modal Anal. 2019; 6:1-0.

Satapathy R, Beura S. Management of Colletotrichum gloeosporioides (Penz.) Causing Cashew Anthracnose through Botanicals. Int. J. Curr. Microbiol. Appl. Sci. 2018; 7:3539-43. https://doi.org/10.20546/ijcmas.2018.709.439 DOI: https://doi.org/10.20546/ijcmas.2018.709.439

Thind TS, Agrawal SK, Saxena AK, Arora S. Studies on cytotoxic, hydroxyl radical scavenging and topoisomerase inhibitory activities of extracts of Tabernaemontana divaricata (L.) R. Br. ex Roem. and Schult. Food and Chemical Toxicology. 2008; 46(8):2922-7. https://doi.org/10.1016/j. fct.2008.05.036 DOI: https://doi.org/10.1016/j.fct.2008.05.036

Rumzhum NN, Rahman MM, Kazal MK. Antioxidant and cytotoxic potential of methanol extract of Tabernaemontana divaricata leaves. International Current Pharmaceutical Journal. 2012; 1(2):27-31. https://doi.org/10.3329/icpj. v1i2.9446 DOI: https://doi.org/10.3329/icpj.v1i2.9446

Thombre, R.Jagtap, R.Patil, N. Evaluation of phytoconstituents, antibacterial, antioxidant and cytotoxic activity of Vitex negundo L. and Tabernaemontana divaricata L. International Journal of Pharma and Biological Sciences. 2013; 4:389-96.

Lee CC, Houghton P. Cytotoxicity of plants from Malaysia and Thailand used traditionally to treat cancer. Journal of Ethnopharmacology. 2005; 100(3):237-43. https://doi. org/10.1016/j.jep.2005.01.064 DOI: https://doi.org/10.1016/j.jep.2005.01.064

Kumar A, Selvakumar S. Antiproliferative efficacy of Tabernaemontana divaricata against HEP2 cell line and Vero cell line. Pharmacognosy Magazine. 2015; 11(Suppl 1):S46. https://doi.org/10.4103/0973-1296.157682 DOI: https://doi.org/10.4103/0973-1296.157682

Hullatti K, Pathade N, Mandavkar Y, Godavarthi A, Biradi M. Bioactivity-guided isolation of cytotoxic constituents from three medicinal plants. Pharmaceutical Biology. 2013; 51(5):601-6. https://doi.org/10.3109/13880209.2012.7539 19 DOI: https://doi.org/10.3109/13880209.2012.753919

Poornima K, Gopalakrishnan VK. Anticancer activity of Tabernaemontana coronaria against carcinogen induced clear cell renal cell carcinoma. Chinese Journal of Biology. 2014; 2014. https://doi.org/10.1155/2014/584074 DOI: https://doi.org/10.1155/2014/584074

Bao MF, Yan JM, Cheng GG, Li XY, Liu YP, Li Y, Cai XH, Luo XD. Cytotoxic indole alkaloids from Tabernaemontana divaricata. Journal of Natural Products. 2013; 76(8):1406- 12. https://doi.org/10.1021/np400130y DOI: https://doi.org/10.1021/np400130y

Guo LL, He HP, Di YT, Li SF, Cheng YY, Yang W, Li Y, Yu JP, Zhang Y, Hao XJ. Indole alkaloids from Ervatamia chinensis. Phytochemistry. 2012; 74:140-5. https://doi. org/10.1016/j.phytochem.2011.11.002 DOI: https://doi.org/10.1016/j.phytochem.2011.11.002

Gunasekera SP, Cordell G, Farnsworth NR. Anticancer indole alkaloids of Ervatamia heyneana. Phytochemistry. 1980; 19(6):1213-8. https://doi.org/10.1016/0031-9422(80)83086- X DOI: https://doi.org/10.1016/0031-9422(80)83086-X

Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F and Ishibashi M. Coronaridine, an iboga type alkaloid from Tabernaemontana divaricata, inhibits the Wnt signaling pathway by decreasing β-catenin mRNA expression. Bioorganic and Medicinal Chemistry Letters. 2015; 25(18):3937-3940. https://doi.org/10.1016/j. bmcl.2015.07.036 DOI: https://doi.org/10.1016/j.bmcl.2015.07.036

Mavuduru S, Kriti K, Mishra A, Ghosh M. Isolation of Anticancer Agents from Tabernaemontana divaricata (L.) R. Br. ex Roem. and Schult.

Dantu AS, Shankarguru P, Ramya DD, Vedha HB. Evaluation of in vitro anticancer activity of hydroalcoholic extract of Tabernaemontana divaricata. Asian J Pharm Clin Res. 2012; 5(3):59-61.

Doshi GM, Kanad PP, Azad N, Desai A, Somani RR, Chaskar PK. In vitro Cytotoxicity Studies on Tabernaemontana divaricata leaves extracts by sulforhodamine B assay method. Int. J. Pharm. Sci. Rev. Res. 2017; 45:179-82.

Kam TS, Pang HS, Lim TM. Biologically active indole and bisindole alkaloids from Tabernaemontana divaricata. Organic and Biomolecular Chemistry. 2003; 1(8):1292-7. https://doi.org/10.1039/b301167d DOI: https://doi.org/10.1039/b301167d

Ingkaninan K, Changwijit K, Suwanborirux K. Vobasinyliboga bisindole alkaloids, potent acetylcholinesterase inhibitors from Tabernaemontana divaricata root. Journal of Pharmacy and Pharmacology. 2006; 58(6):847-52. https://doi.org/10.1211/jpp.58.6.0015 DOI: https://doi.org/10.1211/jpp.58.6.0015

Chaiyana W, Schripsema J, Ingkaninan K, Okonogi S. 3′-R/SHydroxyvoacamine, a potent acetylcholinesterase inhibitor from Tabernaemontana divaricata. Phytomedicine. 2013; 20(6):543-8. https://doi.org/10.1016/j.phymed.2012.12.016 DOI: https://doi.org/10.1016/j.phymed.2012.12.016

Chattipakorn S, Pongpanparadorn A, Pratchayasakul W, Pongchaidacha A, Ingkaninan K, Chattipakorn N. Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats. Journal of Ethnopharmacology. 2007; 110(1):61-8. https://doi. org/10.1016/j.jep.2006.09.007 DOI: https://doi.org/10.1016/j.jep.2006.09.007

Ingkaninan K, Temkitthawon P, Chuenchom K, Yuyaem T, Thongnoi W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. Journal of Ethnopharmacology. 2003; 89(2-3):261-4. https://doi.org/10.1016/j.jep.2003.08.008 DOI: https://doi.org/10.1016/j.jep.2003.08.008

Nakdook W, Khongsombat O, Taepavarapruk P, Taepavarapruk N, Ingkaninan K. The effects of Tabernaemontana divaricata root extract on amyloid β-peptide 25-35 peptides induced cognitive deficits in mice. Journal of Ethnopharmacology. 2010; 130(1):122-6. https:// doi.org/10.1016/j.jep.2010.04.027 DOI: https://doi.org/10.1016/j.jep.2010.04.027

Singh MK, Usha R, Hithayshree KR, Bindhu OS. Hemostatic potential of latex proteases from Tabernaemontana divaricata (L.) R. Br. ex. Roem. and Schult. and Artocarpus altilis (Parkinson ex. FA Zorn) Forsberg. Journal of Thrombosis and Thrombolysis. 2015; 39(1):43-9. https:// doi.org/10.1007/s11239-013-1012-y DOI: https://doi.org/10.1007/s11239-013-1012-y

Jain S, Jain A, Deb L, Dutt KR, Jain DK. Evaluation of antifertility activity of Tabernaemontana divaricata (Linn) R. Br. leaves in rats. Natural Product Research. 2010; 24(9):855- 60. https://doi.org/10.1080/14786410903314385 DOI: https://doi.org/10.1080/14786410903314385

Gomez Gonzalez C, Rodriguez C, Janetine S. hecubine: Two novel alkaloids. Revista Cubana de Farmacia. 1978; 12:177-83.

Arambewela LS, Ranatunge T. Indole alkaloids from Tabernaemontana divaricata. Phytochemistry. 1991; 30(5):1740-1. https://doi.org/10.1016/0031-9422(91)84254- P DOI: https://doi.org/10.1016/0031-9422(91)84254-P

Pawelka KH, Stockigt J. Indole alkaloids from cell suspension cultures of Tabernaemontana divaricata and Tabernanthe iboga. Plant Cell Reports. 1983; 2(2):105-7. https://doi.org/10.1007/BF00270178 DOI: https://doi.org/10.1007/BF00270178

Gorman M, Neuss N, Cone NJ, Deyrup JA. Alkaloids from Apocynaceae. III. 1 Alkaloids of Tabernaemontana and Ervatamia. The Structure of Coronaridine, A New Alkaloid Related to Ibogamine2. Journal of the American Chemical Society. 1960; 82(5):1142-5. https://doi.org/10.1021/ ja01490a031 DOI: https://doi.org/10.1021/ja01490a031

Elkeiy M. Separation, Isolation and Identification of Certain. Journal of Pharmaceutical Sciences of the United Arab Republic. 1966; 7.

Gomez-Gonzalez C, Polo CN, Rodriguez SC, Mendez AP. Phytochemistry of Ervatamia coronaria Stapf (IV). Fractionation of the total bases present in the flowers in an acidity gradient. Cuban Magazine of Pharmacy.1981; 15(3):192-9.

Gomez Gonzalez C, Martinez J. Phytochemistry of Ervatamia coronaria Stapf.(II). Hecubine and voaphylline: Two alkaloids present in leaves. Revista Cubana de Farmacia. 1976; 10:45-54.

Raj K, Shoeb A, Kapil RS, Popli SP. Alkaloids of Tabernaemontana divaricata. Phytochemistry. 1974; 13(8):1621-2. https://doi.org/10.1016/0031- 9422(74)80344-4 DOI: https://doi.org/10.1016/0031-9422(74)80344-4

Pathak S, Wanjari MM, Jain SK, Tripathi M. Evaluation of antiseizure activity of essential oil from roots of Angelica archangelica Linn. in mice. Indian Journal of Pharmaceutical Sciences. 2010; 72(3):371. https://doi.org/10.4103/0250- 474X.70487 DOI: https://doi.org/10.4103/0250-474X.70487

Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International. 2014; 2014. https:// doi.org/10.1155/2014/186864 DOI: https://doi.org/10.1155/2014/186864

Malla B, Gauchan DP, Chhetri RB. An ethnobotanical study of medicinal plants used by ethnic people in Parbat district of western Nepal. Journal of Ethnopharmacology. 2015; 165:103-17. https://doi.org/10.1016/j.jep.2014.12.057 DOI: https://doi.org/10.1016/j.jep.2014.12.057

Medeiros MR, de Melo Prado LA, Fernandes VC, Figueiredo SS, Coppede J, Martins J, Fiori GM, Martinez-Rossi NM, Beleboni RO, Contini SH, Pereira PS. Antimicrobial activities of indole alkaloids from Tabernaemontana catharinensis. Natural Product Communications. 2011; 6(2):1934578X1100600209. https://doi.org/10.1177/1934578X1100600209 DOI: https://doi.org/10.1177/1934578X1100600209

Kumari S, Mazumder A, Bhattacharya S. Pharmacognostical and antimicrobial studies of the stem of Tabernaemontana divaricata Linn. Int. J. Pharm. Sci. 2015; 7:101-4.

Ashikur RM, Hasanuzzaman MD, Mofizur RM, Zahan SI, Muhuri RS. Evaluation of antibacterial activity of study of leaves of Tabernaemontana divaricata (L.). Int. Res. J. Pharm. 2011; 2:123-7.

Gopinath SM, Suneetha TB, Mruganka VD, Ananda S. Evaluation of antibacterial activity of Tabernaemontana divaricata (L.) leaves against the causative organisms of bovine mastitis. International Journal of Research in Phytochemistry and Pharmacology. 2011; 1(4):211-3.

Pushpa B, Latha KP, Vaidya VP, Shruthi A, Shweath C. In vitro anthelmintic activity of leaves extracts of Tabernaemontana coronaria. International Journal of ChemTech Research. 2011; 3(4):1788-90.

Shaker IA, Inampudi S, Rayapu V. Antimicrobial activity assay of Tabernaemontana coronaria. Int. J. Bioassays (IJB). 2012; 1:4-5.

Haniffa MA, Kavitha K. Antibacterial activity of medicinal herbs against the fish pathogen Aeromonas hydrophila. Journal of Agricultural Technology. 2012; 8(1):205-11.

Sumitha J, Padmalatha C, Singh AR. Antibacterial efficacy of Moringa oleifera and Tabernaemontana divaricata flower extracts on occular pathogens. Int. J. Curr. Microbiol. Appl. Sci. 2015; 4:203-16.

Raja A, Ashokkumar S, Marthandam RP, Jayachandiran J, Khatiwada CP, Kaviyarasu K, Raman RG, Swaminathan M. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Journal of Photochemistry and Photobiology B: Biology. 2018; 181:53-8. https://doi. org/10.1016/j.jphotobiol.2018.02.011 DOI: https://doi.org/10.1016/j.jphotobiol.2018.02.011

Zhu WT, Zhao Q, Huo ZQ, Hao XJ, Yang M, Zhang Y. Taberdivamines A and B, two new quaternary indole alkaloids from Tabernaemontana divaricata. Tetrahedron Letters. 2020; 61(44):152400. https://doi.org/10.1016/j.tetlet. 2020.152400 DOI: https://doi.org/10.1016/j.tetlet.2020.152400

Radhika B. Comparitive study of soxhlation and maceration extracts of Tabernaemontana divaricta leaves for antibacterial activity. J. Nat. Prod. Plant Resour. 2017; 7:34-9.

Radhika B, Vilasini S. Anti-helminthic activity of Tabernaemontana divaricta leaves. International Journal of Pharmacy and Biological Sciences. 2016; 6(4):54-8. https:// doi.org/10.21276/ijpbs.2016.6.4.8 DOI: https://doi.org/10.21276/ijpbs.2016.6.4.8

King CH. Lifting the burden of schistosomiasis-defining elements of infection-associated disease and the benefits of antiparasite treatment. The Journal of Infectious Diseases. 2007; 196(5):653-5. https://doi.org/10.1086/520522 DOI: https://doi.org/10.1086/520522

Chittaragi A, Kodiyalmath J. A comparative study on anthelmintic activity of various solvent extracts of Clavaria rosea. Journal of Pharmacognosy and Phytochemistry. 2014; 3(3):29-32.

Khan MS. Gastroprotective effect of Tabernaemontana divaricata (Linn.) R. Br. Flower methanolic extract in wistar rats. British Journal of Pharmaceutical Research. 2011; 1(3):88. https://doi.org/10.9734/BJPR/2011/347 DOI: https://doi.org/10.9734/BJPR/2011/347

Ali Khan MS, Mat Jais AM, Afreen A. Prostaglandin analogous and antioxidant activity mediated gastroprotective action of Tabernaemontana divaricata (L.) R. Br. flower methanolic extract against chemically induced gastric ulcers in rats. BioMed Research International. 2013; 2013. https://doi.org/10.1155/2013/185476 DOI: https://doi.org/10.1155/2013/185476

Kanthlal SK, Kumar BA, Joseph J, Aravind R, Frank PR. Amelioration of oxidative stress by Tabernamontana divaricata on alloxan-induced diabetic rats. Ancient Science of Life. 2014; 33(4):222. https://doi.org/10.4103/0257- 7941.147429 DOI: https://doi.org/10.4103/0257-7941.147429

Kojima I, Umezawa K. Conophylline: A novel differentiation inducer for pancreatic β cells. The International Journal of Biochemistry and Cell Biology. 2006; 38(5-6):923-30. https://doi.org/10.1016/j.biocel.2005.09.019 DOI: https://doi.org/10.1016/j.biocel.2005.09.019

Fujii M, Takei I, Umezawa K. Antidiabetic effect of orally administered conophylline-containing plant extract on streptozotocin-treated and Goto-Kakizaki rats. Biomedicine and Pharmacotherapy. 2009; 63(10):710-6. https://doi. org/10.1016/j.biopha.2009.01.006 DOI: https://doi.org/10.1016/j.biopha.2009.01.006