Apium graveolens Aqueous Extract Reduced Cardiovascular Diseases and Inflammatory Biomarkers Expression in High-Fat Diet-Fed BALB/C Mice

Jump To References Section

Authors

  • Biochemistry Department, North-Eastern Hill University (NEHU), Shillong – 793022, Meghalaya ,IN
  • Biochemistry Department, North-Eastern Hill University (NEHU), Shillong – 793022, Meghalaya ,IN
  • Biochemistry Department, North-Eastern Hill University (NEHU), Shillong – 793022, Meghalaya ,IN

DOI:

https://doi.org/10.18311/jnr/2023/30648

Keywords:

Apium graveolens, Biomarkers, Cardiovascular Diseases (CVD), Inflammatory Biomarker, Risk Factors, Serum, Tissue Analysis

Abstract

Background and Aims: Cardiovascular disease prevention has always been a high goal. The goal of this study is to investigate if Apium graveolens has any influence on cardiovascular disease risk factors, biomarkers, and inflammatory biomarkers in male BALB/c mice that have been given a high-fat diet. Methods: Apium graveolens aqueous extract was given to male BALB/c mice, and they were either fed a standard pellet or a diet composed of cholesterol (0.15%), sodium cholate (0.5%), and pure coconut oil (21%) for 12 weeks. Serum fasting glucose, a lipid profile, liver function tests, and cardiac indicators were used to evaluate the extract’s anti-dyslipidemic, hypoglycemic, hepatoprotective, and cardioprotective characteristics. Antioxidant enzyme markers in tissues were also evaluated. To evaluate inflammatory and CVD biomarkers in cardiac tissue, RT-qPCR and ELISA were used. An unpaired t-test assessed group differences. P < 0.05 showed significance. Results: The HFD control group exhibited considerably higher levels of blood glucose, lipid profile, hepatic indicators, inflammatory and cardiac markers, and lower levels of HDL-C and antioxidant enzymes. When administered orally, an aqueous extract of Apium graveolens significantly reduced blood glucose levels. Serum lipids and liver indicators returned to nearnormal levels. In addition to a considerable reduction in MDA levels, treated mice showed a large increases in catalase and reduced glutathione activities. Inflammatory and cardiovascular disease biomarker expression was reduced in the extract-treated groups. Conclusions: Apium graveolens consumption may help reduce the risk of cardiovascular disorders.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-07-10

How to Cite

Marbaniang, C., Sharan, R. N., & Kma, L. (2023). <i>Apium graveolens</i> Aqueous Extract Reduced Cardiovascular Diseases and Inflammatory Biomarkers Expression in High-Fat Diet-Fed BALB/C Mice. Journal of Natural Remedies, 23(3), 891–921. https://doi.org/10.18311/jnr/2023/30648

Issue

Section

Research Articles
Received 2022-07-11
Accepted 2023-05-25
Published 2023-07-10

 

References

Saleem U, Riaz S, Ahmad B, Saleem M. Pharmacological screening of Trachyspermum Ammi for antihyperlipidemic activity in Triton X-100 induced hyperlipidemia rat model. Pharmacognosy Res. 2017; 9(1):S34-40. https://doi.org/10.4103/ pr.pr_37_17 DOI: https://doi.org/10.4103/pr.pr_37_17

Cardiovascular Disease Foundation [Internet]. What is cardiovascular disease; 2011. World Health Organization (WHO). Cardiovascular diseases (CVDs) [Fact Sheet]. 2021. Available at https:// www.who.int/news-room/fact-sheets/detail/ cardiovascular-diseases-(cvds)

Roger VL, Lloyd-Jones D, Berry JD. Heart disease and stroke statistics 2011 update: A report from the American Heart Association. Circulation. 2011; 123:180-209. https://doi.org/10.1161/ CIR.0b013e3182009701

Thompkinson DK, Bhavana V, Kanika P. Dietary approaches for the management of cardiovascular health- A review. J Food Sci Technol. 2014; 51(10):2318-30. https://doi.org/10.1007/s13197-012- 0661-8 DOI: https://doi.org/10.1007/s13197-012-0661-8

Olorunnisola OS, Bradley G, Afolayan AJ. Ethnobotanical information on plants used for the management of cardiovascular diseases in Nkonkobe municipality. J Med Plant Res. 2011; 5:4256-60.

Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, Halcox J, et al. Working group on endothelins and endothelial factors of the european society of hypertension. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the working group on endothelins and endothelial factors of the European society of hypertension. J Hypertens. 2005; 23:233-46. https://doi.org/10.1097/00004872-200502000-00001 DOI: https://doi.org/10.1097/00004872-200502000-00001

Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world - A growing challenge. N Eng J Med. 2007; 356:213-15. https://doi.org/10.1056/NEJMp068177 DOI: https://doi.org/10.1056/NEJMp068177

Vogiatzi G, Tousoulis D, Stefanadis C. The role of oxidative stress in atherosclerosis Hellenic. J Cardiol. 2009; 50:402-9. PMID: 19767282.

Radhika S, Smila KH, Muthezhilan R. Cardioprotective activity of Hybanthus enneaspermus (Linn.) on isoproterenol-induced rats. Ind J Fundam Appl Sci. 2011; 1:90-7.

Sheweita SA, Abd El-Gabar M, Bastawy M. Carbon tetrachloride-induced changes in the activity of Phase II drug-metabolizing enzyme in the liver of male rats: Role of antioxidants. Toxicology. 2001; 165:217-24. https://doi.org/10.1016/S0300- 483X(01)00429-2 DOI: https://doi.org/10.1016/S0300-483X(01)00429-2

Adigun NS, Oladiji AT, Ajiboye TO. The antioxidant and anti-hyperlipidemic activity of hydroethanolic seed extract of Aframomum melegueta K. Schum in Triton X-100 induced hyperlipidemic rats. S Afr J Bot. 2006; 105:324-32. https://doi. org/10.1016/j.sajb.2016.03.015 DOI: https://doi.org/10.1016/j.sajb.2016.03.015

Hallenbeck JM, Hansson GK, Becker KJ. Immunology of ischemic vascular disease: Plaque to attack. Trends Immuno. 2005; l(26):550-6. https://doi.org/10.1016/j. it.2005.08.007 DOI: https://doi.org/10.1016/j.it.2005.08.007

Mohale DS, Dewani AP, Saoji AN, Khadse CD. Antihyperlipidemic activity of isolated constituents from Lagenaria siceraria in albino rats. Int J Green Pharm. 2008; 2:104-7. https://doi.org/10.4103/0973-8258.41181 DOI: https://doi.org/10.4103/0973-8258.41181

Hadi NR, Mohammad BI, Ajeena IM, Sahib HH. The antiatherosclerotic potential of clopidogrel: Antioxidant and anti-inflammatory approaches. BioMed Res Internt. 2013; 2013:1-10. https://doi. org/10.1155/2013/790263 DOI: https://doi.org/10.1155/2013/790263

Daniela S, Guido I. Inflammation and cardiovascular diseases: The most recent findings. Int J Mol Sci. 2019; 20:3879. https://doi.org/10.3390/ijms20163879 DOI: https://doi.org/10.3390/ijms20163879

Abdulhamied A, Martin SS, Leucker TM, Michos ED, Blaha MJ, Lowenstein CJ, et al. Inflammation and cardiovascular disease: From mechanisms to therapeutics. Am J Phys Chem. 2020; 4:100-30. https://doi.org/10.1016/j.ajpc.2020.100130 DOI: https://doi.org/10.1016/j.ajpc.2020.100130

Vigushin DM, Pepys MB, Hawkins PN. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest. 1993; 91:1351-7. https://doi.org/10.1172/JCI116336 DOI: https://doi.org/10.1172/JCI116336

Sattar N, McCarey DW, Capell H, McInnes IB. Explaining how ‘high grade’ systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation. 2003; 108:2957-63. https://doi. org/10.1161/01.CIR.0000099844.31524.05 DOI: https://doi.org/10.1161/01.CIR.0000099844.31524.05

Nakamura M, Yoshida H, Arakawa N, Saitoh S, Satoh M, Hiramori K. Effects of tumor necrosis factor-alpha on basal and stimulated endotheliumdependent vasomotion in human resistance vessel. J Cardiovasc Pharmacol. 2000; 36:487-92. https://doi. org/10.1097/00005344-200010000-00011 DOI: https://doi.org/10.1097/00005344-200010000-00011

Yoshizumi M, Perrella MA, Burnett JC, Lee ME. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res. 1993; 73(1):205-9. https://doi.org/10.1161/01.RES.73.1.205 DOI: https://doi.org/10.1161/01.RES.73.1.205

Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015; 278:483-93. https://doi.org/10.1111/joim.12406 DOI: https://doi.org/10.1111/joim.12406

Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circ Res. 2016; 118:145-56. https://doi.org/10.1161/CIRCRESAHA.115.306656 DOI: https://doi.org/10.1161/CIRCRESAHA.115.306656

Vasan RS. Biomarkers of cardiovascular disease molecular basis and practical considerations. Circulation. 2006; 113(19):2335-62. https://doi.org/10.1161/CIRCULATIONAHA.104.482570 DOI: https://doi.org/10.1161/CIRCULATIONAHA.104.482570

Dimarakis I, Joshi V, Hesford W, Asimakopoulos G. 3 - minimized extracorporeal circulation: Physiology and pathophysiology. T. Gourlay, S. Gunaydin, editors. In: Wood head publishing series in biomaterials, minimized cardiopulmonary bypass techniques and technologies. Wood Head Publishing; 2012. p. 35-44, https://doi.org/10.1533/9780857096029.1.35 DOI: https://doi.org/10.1533/9780857096029.1.35

Brewster LM. Creatine kinase, energy reserve, and hypertension: From bench to bedside. Ann Transl Med. 2018; 6(15):292. https://doi.org/10.21037/atm.2018.07.15 DOI: https://doi.org/10.21037/atm.2018.07.15

Karamat FA, Oudman I, Haan YC, van Kuilenburg ABP, Leen R, et al. Creatine kinase inhibition lowers systemic arterial blood pressure in spontaneously hypertensive rats: A randomized controlled trial. J Hypertens. 2016; 34:2418-26. https://doi.org/10.1097/HJH.0000000000001090 DOI: https://doi.org/10.1097/HJH.0000000000001090

Makoto W, Tomonori O, Yoshihiro K, Aya H, Akira O. Elevated serum creatine kinase predicts first-ever myocardial infarction: A 12-year population-based cohort study in Japan, the Suita study. Int J Epidemiol. 2009; 38:1571-9. https://doi.org/10.1093/ije/dyp212 DOI: https://doi.org/10.1093/ije/dyp212

Garg P, Morris P, Fazlanie AL, Vijayan S, Dancso B, Dastidar AG, et al. Cardiac biomarkers of the acute coronary syndrome: From history to high-sensitivity cardiac troponin. Intern Emerg Med. 2017; 12(2):147- 55. https://doi.org/10.1007/s11739-017-1612-1 DOI: https://doi.org/10.1007/s11739-017-1612-1

Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E, Bickel C, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N Engl J Med. 2009; 361(9):868-77. https://doi.org/10.1056/ NEJMoa0903515 DOI: https://doi.org/10.1056/NEJMoa0903515

Harrison T, Longo D, Kasper D, Jameson J, Fauci A, Hauser S, et al. Harrison’s principles of internal medicine. New York: McGraw- Hill; 2012.

Hassan AK, Bergheanu SC, Hasan-Ali H, Liem SS, van der Laarse A, Wolterbeek R, et al. Usefulness of peak troponin-T to predict infarct size and longterm outcome in patients with first acute myocardial infarction after primary percutaneous coronary intervention. Am J Cardiol. 2009; 103(6):779-84. https://doi.org/10.1016/j.amjcard.2008.11.031 DOI: https://doi.org/10.1016/j.amjcard.2008.11.031

Sze J, Mooney J, Barzi F, Hillis GS, Chow CK. Cardiac troponin and its relationship to cardiovascular outcomes in community populations- A systematic review and meta-analysis. Heart, Lung and Cir. 2016; 25:217-28. https://doi.org/10.1016/j.hlc.2015.09.001 DOI: https://doi.org/10.1016/j.hlc.2015.09.001

Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006; 27:47-72. https://doi.org/10.1210/ er.2005-0014 DOI: https://doi.org/10.1210/er.2005-0014

Wu Q, Xu-Cai YO, Chen S, Wang W. Corin: New insights into the natriuretic peptide system. Kidney Int. 2009; 75:142-6. https://doi.org/10.1038/ki.2008.418 DOI: https://doi.org/10.1038/ki.2008.418

Levis ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998; 339:321-8. https://doi. org/10.1056/NEJM199807303390507 DOI: https://doi.org/10.1056/NEJM199807303390507

Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol. 2015; 308(10):F1047-55. https://doi.org/10.1152/ajprenal.00164.2014 DOI: https://doi.org/10.1152/ajprenal.00164.2014

Zeidel ML. Renal actions of atrial natriuretic peptide: Regulation of collecting duct sodium and water transport. Annu Rev Physiol. 1990; 52:747-59. https://doi.org/10.1146/annurev.ph.52.030190.003531 DOI: https://doi.org/10.1146/annurev.ph.52.030190.003531

Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, Fonarow GC, Greenberg B, Januzzi JL Jr, Kiernan MS, Liu PP, Wang TJ, Yancy CW, Zile MR. American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology; Council on Basic Cardiovascular Sciences; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on Epidemiology and Prevention; Council on Functional Genomics and Translational Biology; and Council on Quality of Care and Outcomes Research. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2017; 135(22):e1054- 91. https://doi.org/10.1161/CIR.0000000000000490 DOI: https://doi.org/10.1161/CIR.0000000000000490

Biaggi P, Ammann C, Imperiali M, Hammerer- Lercher A, Breidthardt T, Müller C, et al. Soluble ST2- A new biomarker in heart failure. Cardiovasc Med. 2019; 22:w02008. https://doi.org/10.4414/ cvm.2019.02008 DOI: https://doi.org/10.4414/cvm.2019.02008

Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, et al. IL-33 reduces the development of atherosclerosis. J Exp Med. 2008; 205:339-46. https://doi.org/10.1084/jem.20071868 DOI: https://doi.org/10.1084/jem.20071868

Miller AM, Asquith DL, Hueber AJ, Anderson LA, Holmes WM, McKenzie AN, et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res. 2010; 107:650-8. https://doi.org/10.1161/CIRCRESAHA.110.218867 DOI: https://doi.org/10.1161/CIRCRESAHA.110.218867

Villacorta H, Maisel AS. Soluble ST2 testing: A promising biomarker in the management of heart failure. Arq Bras Cardiol. 2016; 106(2):145-52. https://doi.org/10.5935/abc.20150151 DOI: https://doi.org/10.5935/abc.20150151

Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009; 2(6):684-91. https://doi.org/10.1161/CIRCHEARTFAILURE.109.873240 DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.109.873240

Bartunek J, Delrue L, Van Durme F, Muller O, Casselman F, De Wiest RNB, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008; 52:2166-74. https://doi.org/10.1016/j. jacc.2008.09.027 DOI: https://doi.org/10.1016/j.jacc.2008.09.027

Demyanets S, Kaun C, Pentz R, Krychtiuk KA, Rauscher S, Pfaffenberger S, et al. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J Mol Cell Cardiol. 2013; 60:16-26. https://doi.org/10.1016/j. yjmcc.2013.03.020 DOI: https://doi.org/10.1016/j.yjmcc.2013.03.020

González FEM, Ponce-RuÍz N, Rojas-GarcÍa AE, Bernal-Hernández YY, Mackness M, Ponce-Gallegos J, et. al. PON1 concentration and high-density lipoprotein characteristics as cardiovascular biomarkers. Arch Med Sci Atheroscler Dis. 2019; 4: e47-54. https://doi.org/10.5114/amsad.2019.84447 DOI: https://doi.org/10.5114/amsad.2019.84447

Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in lowdensity lipoprotein. FEBS Lett. 1991; 286:152-4. https://doi.org/10.1016/0014-5793(91)80962-3 DOI: https://doi.org/10.1016/0014-5793(91)80962-3

Shih DM, Lusis AJ. The roles of PON1 and PON2 in cardiovascular disease and innate immunity. Curr Opin Lipidol. 2009; 20(4):288-92. https://doi. org/10.1097/MOL.0b013e32832ca1ee DOI: https://doi.org/10.1097/MOL.0b013e32832ca1ee

Grzegorzewska AE, Adamska P, Iwańczyk-Skalska E, Ostromecka K, Niepolski L, Marcinkowski W, et al. Paraoxonase 1 concerning dyslipidemia, cardiovascular diseases, and mortality in haemodialysis patients. Sci Rep. 2021; 11. https://doi. org/10.1038/s41598-021-86231-0 DOI: https://doi.org/10.1038/s41598-021-86231-0

Shunmoogam N, Naidoo P, Chilton R. Paraoxonase (PON)-1: A brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc Health Risk Manag. 2018; 14:137-43. https://doi.org/10.2147/ VHRM.S165173 DOI: https://doi.org/10.2147/VHRM.S165173

Mansi K, Abushoffa AM, Disi A, Aburjai T. Hypolipidemic effects of seed extract of celery (Apium graveolens) in rats. Pharmacogn Mag. 2009; 5:301-5. https://doi.org/10.4103/0973-1296.58149 DOI: https://doi.org/10.4103/0973-1296.58149

Adegbola P, Aderibigbe I, Hammed W, Omotayo T. Antioxidant and anti-inflammatory medicinal plants have a potential role in the treatment of cardiovascular disease: A review. Am J Cardiovasc Dis. 2017; 7(2):19- 32. PMID: 28533927.

Dey A, De JN. Pharmacology and medicobotony of aristolochia tagala cham: A review. Pharma Sci Monitor and Int J of Pharm Sci. 2012; 3:0976-7908.

Zhi K, Li M, Zhang X, Gao Z, Bai J, Wu Y, et al. α4β7 integrin (LPAM-1) is upregulated at atherosclerotic lesions and is involved in atherosclerosis progression. Cell Physiol Biochem. 2014; 33:1876-87. https://doi. org/10.1159/000362965 DOI: https://doi.org/10.1159/000362965

Abotsi WK, Ainooson G, Gyasi EB. Acute and subacute toxicity studies of the ethanolic extract of the aerial parts of Hilleria latifolia (Lam.) H. Walt. (Phytolaccaceae) in rodents. West Afr J Pharma. 2011; 22:27-35. https://doi.org/10.4314/ajtcam.v9i1.19 DOI: https://doi.org/10.4314/ajtcam.v9i1.19

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without the use of the preparative ultracentrifuge. Clinic Chem. 1972; 18(6):499-502. PMID: 4337382. https://doi. org/10.1093/clinchem/18.6.499 DOI: https://doi.org/10.1093/clinchem/18.6.499

Singh M, Pathak MS, Paul A. A study on atherogenic indices of pregnancy induced hypertension patients as compared to normal pregnant women. J Clin Diagn Res. 2015; 9(7):BC05-8. https://doi.org/10.7860/ JCDR/2015/13505.6241

Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972; 47:389-94. https://doi. org/10.1016/0003-2697(72)90132-7 DOI: https://doi.org/10.1016/0003-2697(72)90132-7

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82:70-7. https://doi.org/10.1016/0003- 9861(59)90090-6 DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Hwang YP, Choi JH, Jeong HG. Protective effect of the Aralia continentalis root extract against carbon tetrachloride-induced hepatotoxicity in mice. Food Chem Toxicol. 2009; 47:75-81. https://doi. org/10.1016/j.fct.2008.10.011 DOI: https://doi.org/10.1016/j.fct.2008.10.011

Bradford MM. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54. https://doi. org/10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3- New capabilities and interfaces. Nucleic Acids Res. 2012; 40(15). https://doi.org/10.1093/nar/gks596 DOI: https://doi.org/10.1093/nar/gks596

Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007; 23(10):1289-91. https://doi. org/10.1093/bioinformatics/btm091 DOI: https://doi.org/10.1093/bioinformatics/btm091

Bonnefoy M, Abidi H, Jauffret M, Garcia I, Surrace J, Drai J. Hypocholesterolemia in hospitalized elderly: Relations with inflammatory and nutritional status. Rev Med Interne. 2002; 23:991-8. https://doi. org/10.1016/S0248-8663(02)00718-X DOI: https://doi.org/10.1016/S0248-8663(02)00718-X

Ainslie DA, Proietto J, Fam BC, Thorburn AW. Short-term, high-fat diets lower circulating leptin concentrations in rats. Am J Clin Nutr. 2000; 71:438- 42. https://doi.org/10.1093/ajcn/71.2.438 DOI: https://doi.org/10.1093/ajcn/71.2.438

Parry SA, Hodson L. Influence of dietary macronutrients on liver fat accumulation and metabolism. J Investig Med. 2017; 65:1102-15. https:// doi.org/10.1136/jim-2017-000524 DOI: https://doi.org/10.1136/jim-2017-000524

Marbaniang C, Sharan RN, Kma L. In-vitro comparative studies of Apium graveolens L. extracts for antioxidant and anti-inflammatory activity. The NEHU J. 2020; 18(1):43-59.

Mahnaz K, Cordell GA, Sarker MMR, Radzi CwJBWM, Hajifaraji M, Kiat PE. Alternative treatments for weight loss: Safety/risks and effectiveness of antiobesity medicinal plants. Int J Food Prop. 2015; 18:1942-63. https://doi.org/10.1080/10942912.2014.933350 DOI: https://doi.org/10.1080/10942912.2014.933350

Sarzani R, Spannella F, Giulietti F, Balietti P, Cocci G, Bordicchia M. Natriuretic peptides, hypertension, and cardiovascular risk. High Blood Press Cardiovasc Prev. 2017; 24:115-26. https://doi.org/10.1007/ s40292-017-0196-1 DOI: https://doi.org/10.1007/s40292-017-0196-1

Hutcheson R, Rocic P. The vast exploration of the metabolic syndrome, oxidative stress, the environment, and cardiovascular disease. Exp Diabetes Res. 2012. https://doi.org/10.1155/2012/271028 DOI: https://doi.org/10.1155/2012/271028

Oh, Phil-Sun, Lee S-J, Lim K-T. Hypolipidemic and antioxidative effects of the plant glycoprotein (36 kDa) from Rhus verniciflua stokes fruit in triton WR-1339-induced hyperlipidemic mice. Biosci Biotechnol Biochem. 2006; 70:447-56. https://doi. org/10.1271/bbb.70.447 DOI: https://doi.org/10.1271/bbb.70.447

Vijayaraj P, Muthukumar K, Sabarirajan J, Nachiappan V. Antihyperlipidemic activity of Cassia auriculata flowers in triton WR 1339 induced hyperlipidemic rats. Exp Toxicol Pathol. 2013; 65(1-2):135-41. https://doi.org/10.1016/j.etp.2011.07.001 DOI: https://doi.org/10.1016/j.etp.2011.07.001

Sugimoto S, Nakamura S, Yamamoto S, Yamashita C, Oda Y, Matsuda H, et al. Brazilian natural medicines III. Structures of triterpene oligoglycosides and lipase inhibitors from mate, leaves of Ilex paraguariensis. Chem Pharm Bull. 2009; 57:257-61. https://doi. org/10.1248/cpb.57.257 DOI: https://doi.org/10.1248/cpb.57.257

Chander R, Khanna AK, Raj K, Rastogi AK. Antioxidant and lipid-lowering activities of Indian black tea. Indian J Clin Biochem. 2005; 20:153 https:// doi.org/10.1007/BF02893063 DOI: https://doi.org/10.1007/BF02893063

Barter PJ, Nicholls S, Rye K, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004; 95:764-72 https:// doi.org/10.1161/01.RES.0000146094.59640.13 DOI: https://doi.org/10.1161/01.RES.0000146094.59640.13

Maryam K, Mehdi M, ZohrehR, Yahya P, Ebrahim S. Liver enzymes and their association with some cardiometabolic diseases: Evidence from a large kurdish cohort. Bio Med Res Int. 2021; 2021:1- 8. https://doi.org/10.1155/2021/5584452 DOI: https://doi.org/10.1155/2021/5584452

Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med. 2004; 164(19):2147-55. https://doi. org/10.1001/archinte.164.19.2147 DOI: https://doi.org/10.1001/archinte.164.19.2147

Marshall JA, Bessesen DH. Dietary fat and the development of Type 2 diabetes. Diabetes Care. 2002; 25(3):620-2. https://doi.org/10.2337/diacare.25.3.620 DOI: https://doi.org/10.2337/diacare.25.3.620

Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010; 11(4):1365-402. https://doi.org/10.3390/ ijms11041365 DOI: https://doi.org/10.3390/ijms11041365

Yang JJ, Li GL, Liu HR., Ren BB. Effect of evening rose oil on activities of oxygen-free radical scavengingrelated enzymes and hepatic morphosis in rats on high lipid diet. J NingXia Med Coll. 2003; 25:244-6.

Ilaria D, Adriana V, Emilia F, Bruno B. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol. 2006; 40(3):185-191. https://doi.org/10.1016/j.alcohol.2006.12.006 DOI: https://doi.org/10.1016/j.alcohol.2006.12.006

Panchal S, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V, et al. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol. 2011; 57(5):611-24. https://doi.org/10.1097/FJC.0b013e3181feb90a DOI: https://doi.org/10.1097/FJC.0b013e3181feb90a

Huang L, Heinloth A, Zeng Z-B, Paules R, Bushel P. Genes related to apoptosis predict necrosis of the liver as a phenotype observed in rats exposed to a compendium of hepatotoxicants. BMC Genomics. 2008; 9(1):288. https://doi.org/10.1186/1471-2164-9- 288 DOI: https://doi.org/10.1186/1471-2164-9-288

Fraser A, Harris R, Sattar N, Ebrahim S, Smith GD, Lawlor DA. Gamma-glutamyltransferase is associated with incident vascular events independently of alcohol intake: Analysis of the British women’s heart and health study and meta-analysis. Arterioscler Thromb Vasc Biol. 2007; 27:2729-35. https://doi. org/10.1161/ATVBAHA.107.152298 DOI: https://doi.org/10.1161/ATVBAHA.107.152298

McArdle PF, Whitcomb BW, Tanner K, Mitchell BD, Shuldiner AR, Parsa A. Association between bilirubin and cardiovascular disease risk factors: Using Mendelian randomization to assess causal inference. BMC Cardiovasc Disord. 2012; 12:16. https://doi.org/10.1186/1471-2261-12-16 DOI: https://doi.org/10.1186/1471-2261-12-16

Zhu W, Ma Y, Guo W, Lu J, Li X, Wu J, et al. Serum level of lactate dehydrogenase is associated with cardiovascular disease risk as determined by the framingham risk score and arterial stiffness in a health-examined population in China. Int J Gen Med. 2022; 15:11-17. https://doi.org/10.2147/IJGM. S337517 DOI: https://doi.org/10.2147/IJGM.S337517

Rahimi-Sakak F, Maroofi M, Rahmani J, Bellissimo N, Hekmatdoost A. Serum uric acid and risk of cardiovascular mortality: A systematic review and dose-response meta-analysis of cohort studies of over a million participants. BMC Cardiovasc Disord. 2019; 19:218. https://doi.org/10.1186/s12872-019-1215-z DOI: https://doi.org/10.1186/s12872-019-1215-z

Prasad K. Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation. 1999; 99:1355-62. https://doi. org/10.1161/01.CIR.99.10.1355 DOI: https://doi.org/10.1161/01.CIR.99.10.1355

Rocha KKR, Souza GA, Ebaid GX, Seiva FRF, Cataneo AC, Novelli ELB. Resveratrol toxicity: Effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets. Food Chem. Toxicol. 2009; 47:1362-7. https://doi.org/10.1016/j.fct.2009.03.010 DOI: https://doi.org/10.1016/j.fct.2009.03.010

Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979; 59(3):527-605. https://doi.org/10.1152/physrev.1979.59.3.527 DOI: https://doi.org/10.1152/physrev.1979.59.3.527

Cui BK, Liu S, Lin XJ, Wang J, Li SH, Wang QB, et al. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue. Molecules. 2011; 16:9116-28. https:// doi.org/10.3390/molecules16119116 DOI: https://doi.org/10.3390/molecules16119116

Anuradha CV, Selvam R. Effect of oral methionine on tissue lipid peroxidation and antioxidants in alloxan-induced diabetic rats. J Nutr Biochem. 1993; 4(4): 212-17. https://doi.org/10.1016/0955- 2863(93)90054-Z DOI: https://doi.org/10.1016/0955-2863(93)90054-Z

Ntchapda F, Maguirgue K, Adjia H, Etet PFS, Dimo T. Hypolipidemic, antioxidant and antiatherosclerogenic effects of the aqueous extract of Zanthoxylum heitzii stem bark in diet-induced hypercholesterolemic rats. Asian Pac J Trop Med. 2015; 359-65. https://doi.org/10.1016/S1995-7645(14)60344-8 DOI: https://doi.org/10.1016/S1995-7645(14)60344-8

Opoku AR, Maseko NF, Terblanche SE. The in vitro antioxidative activity of some traditional Zulu medicinal plants. Phytother Res. 2002; 16:51-6. https://doi.org/10.1002/ptr.804 DOI: https://doi.org/10.1002/ptr.804

Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006; 83:456S–60S. https://doi.org/10.1093/ajcn/83.2.456S DOI: https://doi.org/10.1093/ajcn/83.2.456S

Ridker M, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017; 377:1119-31. https://doi. org/10.1056/NEJMoa1707914 DOI: https://doi.org/10.1056/NEJMoa1707914

Sánchez-Más J, Lax A, Model CA-L, et al. Correlation between cardiac re-modeling markers and modulation of the IL-33/ST2 system in postinfarction heart failure. EJCI. 2014; 44:643-51. https:// doi.org/10.1111/eci.12282 DOI: https://doi.org/10.1111/eci.12282

Song W, Wang H, Wu Q. Atrial natriuretic peptide in cardiovascular biology and disease (NPPA). Gene. 2015; 569(1):1-6. https://doi.org/10.1016/j. gene.2015.06.029 DOI: https://doi.org/10.1016/j.gene.2015.06.029

Kerkel€a R, Ulvila J, Magga J. Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events. J Am Heart Assoc. 2015; 4. https:// doi.org/10.1161/JAHA.115.002423 DOI: https://doi.org/10.1161/JAHA.115.002423