Evaluation of the Antioxidant, Antihyperglycemic and Hypolipidemic Potential of Alstonia scholaris Leaves Extracts in Streptozotocin-Induced Diabetic Rats

Jump To References Section

Authors

  • Department of Pharmacology, LM College of Pharmacy, Gujarat Technological University, Ahmedabad - 380009, Gujarat ,IN
  • Department of Pharmacology, LM College of Pharmacy, Gujarat Technological University, Ahmedabad - 380009, Gujarat ,IN
  • Department of Pharmacology, Anand Pharmacy College, Gujarat Technological University, Anand - 388001, Gujarat ,IN

DOI:

https://doi.org/10.18311/jnr/2023/31110

Keywords:

Alstonia scholaris, Anti-hyperglycemia, Antioxidant, Hypolipidemia, Streptozotocin

Abstract

The evergreen tree Alstonia scholaris (L) R. Br. (Family: Apocynaceae) is native to Australasia, southern China and the tropics of Asia. Despite its importance as a medicinal plant, little is known about its potential role in complementing standard methods of treating diabetes and its associated consequences. Therefore, the present study scientifically investigated extracts from the leaves of A. scholaris for their antioxidant (in vitro), anti-diabetic, and hypolipidemic effects in rats with type 2 diabetes mellitus. Male Wistar rats were administered streptozotocin (45 mg/kg, i.p.) and fed a high-fat diet to induce type 2 diabetes mellitus. They were treated with 400 mg/kg of an ethyl acetate (EAEAS) and ethanolic (EAAS) extract of A. scholaris leaves after complications persisted. Typical drugs were metformin (200 mg/kg) and canagliflozin (10 mg/kg). In the end, blood was drawn to determine various biochemical parameters such as fasting blood sugar, lipid profile and markers of heart, liver and kidney damage. In addition, the rat’s weight, urinary glucose concentration, urine volume, blood pressure, Electrocardiogram (ECG), and antioxidant potential of EEAS were measured. The pancreas, heart, kidneys, and liver were all subjected to histopathological analysis. A wide range of biochemical and physiological markers, including blood and urine glucose, lipid profile, markers of heart, kidney and liver damage, antioxidant levels and blood pressure, showed significant improvement in response to EEAS. Histopathology illustrates the reverse modulation in heart, kidney, and liver tissue compared to disease control. Based on the data obtained, the EAEAS achieved is far inferior to that required to treat diabetes mellitus. In summary, this present study demonstrates that EEAS (400 mg/kg) can lower blood sugar levels, fight free radicals, and lower bad cholesterol levels in rats with diabetes and complications. Further investigations can be undertaken to explore its mechanism of action at the molecular level.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-05-23

How to Cite

Mishra, S., Beladiya, J., & Mehta, A. (2023). Evaluation of the Antioxidant, Antihyperglycemic and Hypolipidemic Potential of <i>Alstonia scholaris</i> Leaves Extracts in Streptozotocin-Induced Diabetic Rats. Journal of Natural Remedies, 23(2), 499–511. https://doi.org/10.18311/jnr/2023/31110

Issue

Section

Research Articles
Received 2022-08-27
Accepted 2023-02-02
Published 2023-05-23

 

References

Mellitus D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2005; 28(S37):S5-10. https://doi.org/10.2337/diacare.28.suppl_1.S37 PMid:15618111 DOI: https://doi.org/10.2337/diacare.28.suppl_1.S37

Aschner P, Karuranga S, James S, Simmons D, Basit A, Shaw JE, Wild SH, Ogurtsova K, Saeedi P. The International Diabetes Federation’s guide for diabetes epidemiological studies. Diabetes research and clinical practice. 2021; 172. https://doi.org/10.1016/j.diabres.2020.108630 DOI: https://doi.org/10.1016/j.diabres.2020.108630

Alabi TD, Brooks NL, Oguntibeju OO. Antioxidant status and hepato-protective role of Anchomanes difformis in streptozotocin-induced diabetes in male Wistar rats. Herba Polonica. 2020; 66(1). https://doi.org/10.2478/hepo-2020-0005 DOI: https://doi.org/10.2478/hepo-2020-0005

Vickers NJ. Animal communication: when I’m calling you, will you answer too? Current Biology. 2017; 27(14):R713-5. https://doi.org/10.1016/j.cub.2017.05.064 PMid:28743020 DOI: https://doi.org/10.1016/j.cub.2017.05.064

Chandrashekar CN, Madhyastha S, Benjamin S, Gopalakrishna K, Srinivasan KK. Effect of Salacia reticulata Wight extracts on drug induced diabetes mellitus in rats. Herba Polonica. 2008; 54(2).

Kaushik G, Satya S, Khandelwal RK, Naik SN. Commonly consumed Indian plant food materials in the management of diabetes mellitus. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2010; 4(1):21-40. https://doi.org/10.1016/j.dsx.2008.02.006 DOI: https://doi.org/10.1016/j.dsx.2008.02.006

Hnatyszyn O, Mino J, Ferraro G, Acevedo C. The hypoglycemic effect of Phyllanthus sellowianus fractions in streptozotocin-induced diabetic mice. Phytomedicine. 2002; 9(6):556-9. https://doi.org/10.1078/09447110260573209 PMid:12403166 DOI: https://doi.org/10.1078/09447110260573209

Bhatnagar D. Lipid-lowering drugs in the management of hyperlipidaemia. Pharmacology and Therapeutics. 1998; 79(3):205-30. https://doi.org/10.1016/S0163- 7258(98)00018-7 PMid:9776377 DOI: https://doi.org/10.1016/S0163-7258(98)00018-7

Rani A, Kumar S, Khar RK. Murraya koenigii extract loaded phytosomes prepared using antisolvent precipitation technique for improved antidiabetic and hypolidemic activity. Indian Journal of Pharmaceutical Education and Research. 2022; 56 (2):326-38. https://doi.org/10.5530/ijper.56.2s.103 DOI: https://doi.org/10.5530/ijper.56.2s.103

Zhao YL, Gou ZP, Shang JH, Li WY, Kuang Y, Li MY, Luo XD. Anti-microbial effects in vitro and in vivo of Alstonia scholaris. Natural Products and Bioprospecting. 2021; 11(1):127-35. https://doi.org/10.1007/s13659-020-00294-6 PMid:33389714 PMCid:PMC7778864 DOI: https://doi.org/10.1007/s13659-020-00294-6

Craig WJ. Health-promoting properties of common herbs. The American Journal of Clinical Nutrition. 1999; 70(3):491s-499s. https://doi.org/10.1093/ajcn/70.3.491s PMid:10479221 DOI: https://doi.org/10.1093/ajcn/70.3.491s

Verma AR, Vijayakumar M, Mathela CS, Rao CV. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology. 2009; 47(9):2196-201. https://doi.org/10.1016/j.fct.2009.06.005 PMid:19520138 DOI: https://doi.org/10.1016/j.fct.2009.06.005

Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos University Medical Journal. 2012; 12(1):5. https://doi.org/10.12816/0003082 PMid:22375253 PMCid:PMC3286717 DOI: https://doi.org/10.12816/0003082

Anubha A, Rai Y. A Review: Phytochemictry, Ethanobotanical and Pharmacological Activities of Alstonia scholaris R. Br (Apocynaceae). Int J Adv Res. 2015; 3:584-90.

Zhao YL, Yang ZF, Shang JH, Huang WY, Wang B, Wei X, Khan A, Yuan ZW, Liu YP, Wang YF, Wang XH. Effects of indole alkaloids from leaf of Alstonia scholaris on postinfectious cough in mice. Journal of Ethnopharmacology. 2018; 218:69-75. https://doi.org/10.1016/j.jep.2018.02.040 PMid:29496577 PMCid:PMC7126965 DOI: https://doi.org/10.1016/j.jep.2018.02.040

Arulmozhi S, Mazumder PM, Lohidasan S, Thakurdesai P. Antidiabetic and antihyperlipidemic activity of leaves of Alstonia scholaris Linn. R. Br. European Journal of Integrative Medicine. 2010; 2(1):23-32. https://doi. org/10.1016/j.eujim.2009.12.001 DOI: https://doi.org/10.1016/j.eujim.2009.12.001

Hussain AI, Anwar F, Chatha SA, Latif S, Sherazi ST, Ahmad A, Worthington J, Sarker SD. Chemical composition and bioactivity studies of the essential oils from two Thymus species from the Pakistani flora. LWT-Food Science and Technology. 2013; 50(1):185-92. https://doi.org/10.1016/j.lwt.2012.06.003 DOI: https://doi.org/10.1016/j.lwt.2012.06.003

Liu XY, Liu FC, Deng CY, Zhang MZ, Yang M, Xiao DZ, Lin QX, Cai ST, Kuang SJ, Chen J, Chen SX. Left ventricular deformation associated with cardiomyocyte Ca2+ transients delay in early stage of low-dose of STZ and high-fat diet induced type 2 diabetic rats. BMC Cardiovascular Disorders. 2016; 16(1):1-2. https://doi.org/10.1186/s12872-016-0220-8 PMid:26879576 PMCid:PMC4754853 DOI: https://doi.org/10.1186/s12872-016-0220-8

Pereira S, Veeraraghavan P, Ghosh S, Gandhi M. Animal experimentation and ethics in India: the CPCSEA makes a difference. Alternatives to Laboratory Animals. 2004; 32(1_ suppl):411-5. https://doi.org/10.1177/026119290403201s67 PMid:23581110 DOI: https://doi.org/10.1177/026119290403201s67

Bhandari U, Kumar V, Kumar P, Tripathi CD, Khanna G. Protective effect of pioglitazone on cardiomyocyte apoptosis in low-dose streptozotocin and high-fat diet-induced type-2 diabetes in rats. The Indian Journal of Medical Research. 2015; 142(5):598. https://doi.org/10.4103/0971-5916.171290 PMid:26658596 PMCid:PMC4743348 DOI: https://doi.org/10.4103/0971-5916.171290

Rani AN, Mahmud R, Amran N, Asmawi MZ, Mohamed N, Perumal S. In vivo hypoglycemic investigation, antihyperglycemic and antihyperlipidemic potentials of Pereskia bleo Kunth. in normal and streptozotocin-induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine. 2019; 9(2):73. https://doi.org/10.4103/2221-1691.250858 DOI: https://doi.org/10.4103/2221-1691.250858

Freidewald WT. Estimation of the concentration of low density lipoprotein cholesterol in plasma without the use of a centrifuge. Clin Chem. 1972; 18:449-502. https://doi. org/10.1093/clinchem/18.6.499 PMid:4337382 DOI: https://doi.org/10.1093/clinchem/18.6.499

Vidya R, Kalaivani K, Venkatesh R. Antioxidant activity of goat liver slices treated with Cucumis melo (L). Fruit extract. International Journal of Pharmaceutical Sciences and Research. 2014; 5(11):4846.

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry. 1972; 247(10):3170-5. https://doi.org/10.1016/S0021-9258(19)45228-9 PMid:4623845 DOI: https://doi.org/10.1016/S0021-9258(19)45228-9

Moron MS, Depierre JN and Mannervik VC: Levels of glutathione, glutathione reductase and glutathione Stransferase activities in rat lung and liver. Biochem Biophys Acta. 1979; 582:67-8. https://doi.org/10.1016/0304-4165(79)90289-7 PMid:760819 DOI: https://doi.org/10.1016/0304-4165(79)90289-7

Jhansyrani T, Sujatha D, Rupasree P, Bharathi K, Kvsrg P. In-vitro antioxidant potential of selected nutraceuticals. International Journal of Pharmaceutical Sciences and Research. 2019; 10(3):1426-32.

Fontaine AK, Futia GL, Rajendran PS, Littich SF, Mizoguchi N, Shivkumar K, Ardell JL, Restrepo D, Caldwell JH, Gibson EA. Optical vagus nerve modulation of heart and respiration via heart-injected retrograde AAV. Scientific Reports. 2021; 11(1):1-2. https://doi.org/10.1038/s41598-021-83280-3 PMid:33574459 PMCid:PMC7878800 DOI: https://doi.org/10.1038/s41598-021-83280-3

Senguttuvan J, Paulsamy S, Karthika K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine. 2014; 4:S359-67. https://doi.org/10.12980/APJTB.4.2014C1030 PMid:25183112 PMCid:PMC4025295 DOI: https://doi.org/10.12980/APJTB.4.2014C1030

World Health Organization; 2019.

Poongothai K, Ponmurugan P, Ahmed KS, Kumar BS, Sheriff SA. Antihyperglycemic and antioxidant effects of Solanum xanthocarpum leaves (field grown and in vitro raised) extracts on alloxan induced diabetic rats. Asian Pacific Journal of Tropical Medicine. 2011; 4(10):778-85. https://doi.org/10.1016/S1995-7645(11)60193-4 PMid: 22014732 DOI: https://doi.org/10.1016/S1995-7645(11)60193-4

De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 diabetes mellitus and cardiovascular disease: Genetic and epigenetic links. Frontiers in Endocrinology. 2018; 9:2. https://doi.org/10.3389/fendo.2018.00002 PMid:29387042 PMCid:PMC5776102 DOI: https://doi.org/10.3389/fendo.2018.00002

Hosseini SA, Ahmadipour A, Soltani M, Mehdipour M, Mandegary A, Karami-Mohajeri S. Malathionincreased hepatotoxicity in diabetic rats. Pharmaceutical and Biomedical Research. 2020; 6 (1):53-60. https://doi. org/10.18502/pbr.v6i1.3428 DOI: https://doi.org/10.18502/pbr.v6i1.3428

Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal. 2015; 15(1):1-22. https:// doi.org/10.1186/s12937-016-0186-5 PMid:27456681 PM Cid:PMC4960740 DOI: https://doi.org/10.1186/s12937-016-0186-5

Tran N, Pham B, Le L. Bioactive compounds in antidiabetic plants: From herbal medicine to modern drug discovery. Biology. 2020; 9(9):252. https://doi.org/10.3390/ biology9090252 PMid:32872226 PMCid:PMC7563488 DOI: https://doi.org/10.3390/biology9090252