Oxyresveratrol: A Potential Pharmacological Prospective Against Neurodegenerative Diseases

Jump To References Section

Authors

  • Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok - 10330 ,TH
  • The Halal Science Center, Chulalongkorn University, Bangkok - 10330 ,TH
  • The Halal Science Center, Chulalongkorn University, Bangkok - 10330 ,TH
  • The Halal Science Center, Chulalongkorn University, Bangkok - 10330 ,TH
  • Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, Thailand ,TH ORCID logo https://orcid.org/0000-0001-5486-0231
  • The Halal Science Center, Chulalongkorn University, Bangkok - 10330 ,TH

DOI:

https://doi.org/10.18311/jnr/2023/31334

Keywords:

Neurodegenerative Diseases, Oxyresveratrol, Pharmacology

Abstract

Oxyresveratrol (OXY) is a polyphenolic compound found in various plants, including the heartwood of Artocarpus lakoocha, mulberry wood, mulberry twigs, and Smilacis chinae rhizome. Numerous reports have highlighted its pharmacological activities, such as antioxidant, anti-inflammatory, and neuroprotective effects. In this review, we specifically focus on the neuroprotective effects of oxyresveratrol in both in vitro and in vivo models. To conduct this review, we adopted a systematic approach and utilized search engines to explore online databases, covering publications from 2000 to 2021. We carefully analyzed the data and synthesized the findings into a comprehensive table and figure. Our review underscores the application of oxyresveratrol in the context of neurodegenerative diseases, with particular emphasis on conditions such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD), ischemic strokes, and traumatic brain injury. The findings of our review suggest that oxyresveratrol holds significant promise as a natural compound for the prevention and management of neurodegenerative diseases. However, it is important to note that the clinical application of oxyresveratrol is still limited. Consequently, further research is warranted to explore the potential development of innovative health-promoting products utilizing oxyresveratrol, particularly in the context of protecting against neurodegenerative diseases in ageing populations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-31

How to Cite

Mahamud, N., Suksuwan, A., Waloh, N., Salae, K., Tansawat, R., & Dahlan, W. (2023). Oxyresveratrol: A Potential Pharmacological Prospective Against Neurodegenerative Diseases. Journal of Natural Remedies, 23(3), 801–809. https://doi.org/10.18311/jnr/2023/31334

Issue

Section

Short Review
Received 2022-09-26
Accepted 2023-06-30
Published 2023-08-31

 

References

Mei M, Ruan JQ, Wu WJ, Zhou RN, Lei JP, Zhao HY, et al. In vitro pharmacokinetic characterization of mulberroside A, the main polyhydroxylated stilbene in mulberry (Morus alba L.), and its bacterial metabolite oxyresveratrol in traditional oral use. J Agric Food Chem. 2012; 60(9):2299-308. https://doi. org/10.1021/jf204495t PMid:22225542. DOI: https://doi.org/10.1021/jf204495t

Rosanga P, Sithisarn P. Validated TLC-densitometric method for determination of oxyresveratrol contents in ma-haad (Artocarpus lakoocha) heartwood extracts. Mahidol Univ J Pharm Sci. 2016; 43(2):91-6.

Chatsumpun N, Chuanasa T, Sritularak B, Lipipun V, Jongbunprasert V, Ruchirawat S, et al. Oxyresveratrol: structural modification and evaluation of biological activities. Molecules. 2016; 21(4):1-19. https://doi. org/10.3390/molecules21040489 PMid:27104505 PMCid:PMC6273646. DOI: https://doi.org/10.3390/molecules21040489

Likhitwitayawuid K. Oxyresveratrol: sources, productions, biological activities, pharmacokinetics, and delivery systems. Molecules. 2021; 26(14):1- 30. https://doi.org/10.3390/molecules26144212 PMid:34299485 PMCid:PMC8307110. DOI: https://doi.org/10.3390/molecules26144212

Likhitwitayawuid K, Sritularak B, De-Eknamkul W. Tyrosinase Inhibitors from Artocarpus gomezianus. Planta Med. 2000; 66:275-7. https://doi. org/10.1055/s-2000-8656 PMid:10821057. DOI: https://doi.org/10.1055/s-2000-8656

Belhadi A, Sha’ri YBM, Touriki FE, El Fezazi S. Lean production in SMEs: literature review and reflection on future challenges. J. Ind. Prod. Eng. 2018; 35(6):368-82. https://doi.org/10.1080/21681015.2018. 1508081. DOI: https://doi.org/10.1080/21681015.2018.1508081

Rubenstein MA, Weiskopf SR, Carter SL, Eaton MJ, Johnson C, Lynch AJ, et al. Do empirical observations support commonly-held climate change range shift hypotheses? A systematic review protocol. Environ. Evid. 2020; 9(10):1-10. https://doi.org/10.1186/ s13750-020-00194-9 DOI: https://doi.org/10.1186/s13750-020-00194-9

Kim YM, Yun J, Lee CK, Lee H, Min KR, Kim Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J Biol Chem. 2002; 277(18):16340-4. https:// doi.org/10.1074/jbc.M200678200 PMid:11864987. DOI: https://doi.org/10.1074/jbc.M200678200

Xu L, Liu C, Xiang W, Chen H, Qin X, Huang X. Advances in the study of oxyresveratrol. Int. J. Pharmacol. 2014; 10(1):44-54. https://doi. org/10.3923/ijp.2014.44.54. DOI: https://doi.org/10.3923/ijp.2014.44.54

Aftab N, Likhitwitayawuid K, Vieira A. Comparative antioxidant activities and synergism of resveratrol and oxyresveratrol. Nat Prod Res. 2010; 24(18):1726- 33. https://doi.org/10.1080/14786410902990797 PMid:20981613. DOI: https://doi.org/10.1080/14786410902990797

Hankittichai P, Lou HJ, Wikan N, Smith DR, Potikanond S, Nimlamool W. Oxyresveratrol inhibits IL-1beta-induced inflammation via suppressing AKT and ERK1/2 activation in human microglia, HMC3. Int J Mol Sci. 2020; 21(17):1-19. https:// doi.org/10.3390/ijms21176054 PMid:32842681 PMCid:PMC7504001. DOI: https://doi.org/10.3390/ijms21176054

Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol Res. 2017; 124:126-45. https://doi.org/10.1016/j. phrs.2017.08.002 PMid:28803136. DOI: https://doi.org/10.1016/j.phrs.2017.08.002

Du H, Ma L, Chen G, Li S. The effects of oxyresveratrol abrogates inflammation and oxidative stress in rat model of spinal cord injury. Mol Med Rep. 2018; 17(3):4067-73. https://doi.org/10.3892/ mmr.2017.8294

Chao J, Yu MS, Ho YS, Wang M, Chang RC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic. Biol. Med. 2008; 45(7):1019-26. https://doi. org/10.1016/j.freeradbiomed.2008.07.002 PMid: 18675900. DOI: https://doi.org/10.1016/j.freeradbiomed.2008.07.002

Andrabi SA, Spina MG, Lorenz P, Ebmeyer U, Wolf G, Horn TF. Oxyresveratrol (trans-2,3’,4,5’- tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 2004; 1017(1-2):98-107. https://doi. org/10.1016/j.brainres.2004.05.038 PMid:15261105. DOI: https://doi.org/10.1016/j.brainres.2004.05.038

Hasriadi, Wong-on M, Lapphanichayakool P, Limpeanchob N. Neuroprotective effect of Artocarpus lakoocha extract and oxyresveratrol against hydrogen peroxide-induced toxicity in SH-SY5Y cells. Int. J. Pharm. Pharm. 2017; 9(11):229-33. https://doi. org/10.22159/ijpps.2017v9i11.21827. DOI: https://doi.org/10.22159/ijpps.2017v9i11.21827

Weber JT, Lamont M, Chibrikova L, Fekkes D, Vlug AS, Lorenz P, et al. Potential neuroprotective effects of oxyresveratrol against traumatic injury. Eur. J. Pharmacol. 2012; 680:55-62. https://doi. org/10.1016/j.ejphar.2012.01.036 PMid:22489319. DOI: https://doi.org/10.1016/j.ejphar.2012.01.036

Rahman MA, Bishayee K, Sadra A, Huh SO. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim Biophys Acta Gen Subj. 2017; 1861(2):23- 36. https://doi.org/10.1016/j.bbagen.2016.10.025 PMid:27815218. DOI: https://doi.org/10.1016/j.bbagen.2016.10.025

Wongon M, Limpeanchob N. Inhibitory effect of Artocarpus lakoocha Roxb and oxyresveratrol on alpha-glucosidase and sugar digestion in Caco-2 cells. Heliyon. 2020; 6(3):1-6. https://doi.org/10.1016/j. heliyon.2020.e03458 PMid:32154416 PMCid: PMC7056649. DOI: https://doi.org/10.1016/j.heliyon.2020.e03458

Hur J, Kim S, Lee P, Lee YM, Choi SY. The protective effects of oxyresveratrol imine derivative against hydrogen peroxide-induced cell death in PC12 cells. Free Radic Res. 2013; 47(3):212-8. https://doi.org/10. 3109/10715762.2012.762769 PMid:23298159. DOI: https://doi.org/10.3109/10715762.2012.762769

Zhao Z, Jin J, Fang W, Ruan J. Antioxidant activity of polyphenolic constituents from Smilax china. Herald Med. 2008; 27:765-7.

Lorenz PSR, Engelmann M, Wolf G, Horn T.F.W. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide. 2003; 9(2):64-76. https://doi.org/10.1016/j. niox.2003.09.005 PMid:14623172. DOI: https://doi.org/10.1016/j.niox.2003.09.005

Ashraf MI, Shahzad M, Shabbir A. Oxyresveratrol ameliorates allergic airway inflammation via attenuation of IL-4, IL-5, and IL-13 expression levels. Cytokine. 2015; 76(2):375-81. https://doi. org/10.1016/j.cyto.2015.09.013 PMid:26431781 DOI: https://doi.org/10.1016/j.cyto.2015.09.013

Preet K, Khurana N, Sharma N. Phytochemicals as future drugs for Parkinson’s disease: a review. Plant Arch. 2021; 21(1):2338-49. https://doi.org/10.51470/ PLANTARCHIVES.2021.v21.S1.384

Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019; 15(10):565-81. https://doi.org/10.1038/s41582-019- 0244-7 PMid:31501588. DOI: https://doi.org/10.1038/s41582-019-0244-7

Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech. 2017; 10(5):499-502. https://doi. org/10.1242/dmm.030205 PMid:28468935 PMCid: PMC5451177. DOI: https://doi.org/10.1242/dmm.030205

Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res. 2012; 37(9):1829-42. https://doi. org/10.1007/s11064-012-0799-9 PMid:22614926. DOI: https://doi.org/10.1007/s11064-012-0799-9

Shal B, Ding W, Ali H, Kim YS, Khan S. Antineuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front. Pharmacol. 2018; 9:1-17. https://doi.org/10.3389/ fphar.2018.00548 PMid:29896105 PMCid: PMC5986949.

Alzheimer’s association report. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021; 17(3):327-406. https://doi.org/10.1002/alz.12328 PMid:33756057. DOI: https://doi.org/10.1002/alz.12328

Emamzadeh FN, Surguchov A. Parkinson’s Disease: Biomarkers, Treatment, and Risk Factors. Front. Neurosci. 2018; 12(612):1-14. https://doi. org/10.3389/fnins.2018.00612 PMid:30214392 PMCid:PMC6125353. DOI: https://doi.org/10.3389/fnins.2018.00612

Delenclos M, Jones DR, McLean PJ, Uitti RJ. Biomarkers in Parkinson’s disease: Advances and strategies. Parkinsonism Relat. Disord. 2016; 22(Suppl 1):S106- 10. https://doi.org/10.1016/j.parkreldis.2015.09.048 PMid:26439946 PMCid:PMC5120398. DOI: https://doi.org/10.1016/j.parkreldis.2015.09.048

Chahine LM, Stern MB, Chen-Plotkin A. Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat. Disord. 2014; 20(01): S99-S103. https:// doi.org/10.1016/S1353-8020(13)70025-7 PMid: 24262199. DOI: https://doi.org/10.1016/S1353-8020(13)70025-7

Bridi JC, Hirth F. Mechanisms of alpha-synuclein induced synaptopathy in Parkinson’s disease. Front. Neurosci. 2018; 12(80):1-18. https://doi.org/10.3389/ fnins.2018.00080 PMid:29515354 PMCid: PMC5825910.

Gonzalez-Burgos E, Fernandez-Moriano C, Lozano R, Iglesias I, Gomez-Serranillos MP. Ginsenosides Rd and Re co-treatments improve rotenone-induced oxidative stress and mitochondrial impairment in SH-SY5Y neuroblastoma cells. Food Chem. Toxicol. 2017; 109:38-47. https://doi.org/10.1016/j. fct.2017.08.013 PMid:28843595. DOI: https://doi.org/10.1016/j.fct.2017.08.013

Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav. Brain Res. 2005; 162(1):1-10. https://doi.org/10.1016/j. bbr.2005.02.023 PMid:15922062. DOI: https://doi.org/10.1016/j.bbr.2005.02.023

Mori MA, Delattre AM, Carabelli B, Pudell C, Bortolanza M, Staziaki PV, et al. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson’s disease is mediated by a reduction of inducible nitric oxide synthase. Nutr. Neurosci. 2018; 21(5):341-51. https://doi.org/10.1080 /1028415X.2017.1290928 PMid:28221817. DOI: https://doi.org/10.1080/1028415X.2017.1290928

García-Ramos R, López Valdés E, Ballesteros L, Jesús S, Mir P. The social impact of Parkinson’s disease in Spain: Report by the Spanish Foundation for the Brain. Neurología. 2016; 31(6):401-13. https://doi. org/10.1016/j.nrl.2013.04.008 PMid:23816428. DOI: https://doi.org/10.1016/j.nrleng.2013.04.008

Abdel-Rahman M, Galhom RA, Nasr El-Din WA, Mohammed Ali MH, Abdel-Hamid AES. Therapeutic efficacy of olfactory stem cells in rotenone induced Parkinsonism in adult male albino rats. Biomed. Pharmacother. 2018; 103:1178- 86. https://doi. org/10.1016/j.biopha.2018.04.160 PMid:29864896. DOI: https://doi.org/10.1016/j.biopha.2018.04.160

Fayyaz M, Jaffery SS, Anwer F, Zil EAA, Anjum I. The effect of physical activity in Parkinson’s disease: A Mini-Review. Cureus. 2018; 10(7):1-4. https://doi. org/10.7759/cureus.2995 PMid:30245949 PMCid: PMC6143369. DOI: https://doi.org/10.7759/cureus.2995

Sjodahl Hammarlund C, Westergren A, Astrom I, Edberg AK, Hagell P. The impact of living with Parkinson’s disease: Balancing within a web of needs and demands. Parkinsons Dis. 2018; 2018:1-8. https:// doi.org/10.1155/2018/4598651 PMid:30151098 PMCid:PMC6087577. DOI: https://doi.org/10.1155/2018/4598651

Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease. JAMA. 2020; 323(6):548-60.https://doi.org/10.1001/jama.2019.22360 PMid: 32044947. DOI: https://doi.org/10.1001/jama.2019.22360

McNamara P, Durso R. The dopamine system, Parkinson’s disease and language function. Curr Opin Behav Sci. 2018; 21:1-5. https://doi.org/10.1016/j. cobeha.2017.10.010 DOI: https://doi.org/10.1016/j.cobeha.2017.10.010

Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective phytochemicals in experimental ischemic stroke: Mechanisms and potential clinical applications. Oxid. Med. Cell. Longev. 2021; 2021:1- 45. https://doi.org/10.1155/2021/6687386 PMid: 34007405 PMCid:PMC8102108. DOI: https://doi.org/10.1155/2021/6687386

Ruan L, Li G, Zhao W, Meng H, Zheng Q, Wang J. Activation of adenosine A1 receptor in ischemic stroke: Neuroprotection by tetrahydroxy stilbene glycoside as an agonist. Antioxidants. 2021; 10(7):1- 27. https://doi.org/10.3390/antiox10071112 PMid: 34356346 PMCid:PMC8301086. DOI: https://doi.org/10.3390/antiox10071112

Ghajar J. Traumatic brain injury. Lancet. 2000; 356:923-9. https://doi.org/10.1016/S0140-6736(00) 02689-1 PMid:11036909. DOI: https://doi.org/10.1016/S0140-6736(00)02689-1

Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 2007; 99(1):4-9. https:// doi.org/10.1093/bja/aem131 PMid:17573392 DOI: https://doi.org/10.1093/bja/aem131

MohanMarugaRaja MK, Devarajan A, Dhote VV. Dietary supplementation for traumatic brain injury. Diagnosis and Treatment of Traumatic Brain Injury. 2022; 485-94. https://doi.org/10.1016/B978-0-12- 823347-4.00038-5 DOI: https://doi.org/10.1016/B978-0-12-823347-4.00038-5

Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol. 2019; 266(11): 2878- 89. https://doi.org/10.1007/s00415-019-09541-4 PMid:31563989 PMCid:PMC6803592. DOI: https://doi.org/10.1007/s00415-019-09541-4

Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem. 2005; 280(51):42026-35. https://doi. org/10.1074/jbc.M508628200 PMid:16243845. DOI: https://doi.org/10.1074/jbc.M508628200

Shah A, Chao J, Legido-Quigley C, Chang RC. Oxyresveratrol exerts ATF4- and Grp78-mediated neuroprotection against endoplasmic reticulum stress in experimental Parkinson’s disease. Nutr. Neurosci. 2021; 24(3):181-96. https://doi.org/10.1080/10284 15X.2019.1613764 PMid:31100053. DOI: https://doi.org/10.1080/1028415X.2019.1613764

Uddin MS, Kabir MT, Jeandet P, Mathew B, Ashraf GM, Perveen A, et al. Novel anti-Alzheimer’s therapeutic molecules targeting amyloid precursor protein processing. Oxid. Med. Cell. Longev. 2020; 2020:1-19. https://doi.org/10.1155/2020/7039138 PMid:32411333 PMCid:PMC7206886. DOI: https://doi.org/10.1155/2020/7039138

Lakshmi S, Varija Raghu S, Elumalai P, Sivan S. Alkoxy glycerol enhanced activity of Oxyresveratrol in Alzheimer’s disease by rescuing Tau protein. Neurosci Lett. 2021; 759:1-9. https://doi.org/10.1016/j. neulet.2021.135981 PMid:34023407. DOI: https://doi.org/10.1016/j.neulet.2021.135981

Ban JY, Jeon SY, Naguyen T, T, H., Bae K, Song KS, Seong YH. Neuroprotective effect of oxyresveratrol from Smilacis chinae rhizome on amyloid β protein (25—35)-induced neurotoxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 2006; 29(12):2419-24. https://doi.org/10.1248/bpb.29.2419 PMid:17142975 DOI: https://doi.org/10.1248/bpb.29.2419

Rahman MA, Cho Y, Nam G, Rhim H. Antioxidant compound, oxyresveratrol, inhibits APP production through the AMPK/ULK1/mTOR-Mediated autophagy pathway in mouse cortical astrocytes. Antioxidants. 2021; 10(408):1-17. https://doi. org/10.3390/antiox10030408 PMid:33800526 PMCid:PMC7998742. DOI: https://doi.org/10.3390/antiox10030408

Chatsumpun M, Chuanasa T, Sritularak B, Likhitwitayawuid K. Oxyresveratrol protects against DNA damage induced by photosensitized riboflavin. Nat Prod Commun. 2011; 6(1):41-4. https://doi. org/10.1177/1934578X1100600110 PMid:21366042. DOI: https://doi.org/10.1177/1934578X1100600110

Rodsiri R, Benya-aphikul H, N T, Wanakhachornkrai O, Boonlert W, Tansawat R, et al. Neuroprotective effect of oxyresveratrol in rotenone-induced parkinsonism rats. Nat Prod Commun. 2020; 15(10):1-6. https:// doi.org/10.1177/1934578X20966199. https://doi. org/10.1177/1934578X20966199 DOI: https://doi.org/10.1177/1934578X20966199

Shah A, Ho YS, Ng KM, Wang M, Legido-Quigley C, RCC C. neuroprotective effects of oxyresveratrol on 6-hydroxydopamine on medial forebrain bundles in a rat model of Parkinson disease: abridged secondary publication. Hong Kong Med J. 2020; 26:26-8.

Ban JY, Cho SO, Choi SH, Ju HS, Kim JY, Bae K, et al. Neuroprotective effect of Smilacis chinae rhizome on NMDA-induced neurotoxicity in vitro and focal cerebral ischemia in vivo. J. Pharmacol. Sci. 2008; 106(1):68-77. https://doi.org/10.1254/jphs. FP0071206 PMid:18202548. DOI: https://doi.org/10.1254/jphs.FP0071206

Lee HJ, Feng JH, Sim SM, Lim SS, Lee JY, Suh HW. Effects of resveratrol and oxyresveratrol on hippocampal cell death induced by kainic acid. Anim Cells Syst (Seoul). 2019; 23(4):246-52. https://doi.org/10.1080/19768354.2019.1620853 PMid:31489245 PMCid:PMC6711029. DOI: https://doi.org/10.1080/19768354.2019.1620853