Growth Inhibitory Effect of Wedelolactone in Combination with Cisplatin on PA-1 Ovarian Cancer Cell Line
Invitro effect of Wedelolactone and Cisplatin on PA-1 Ovarian Cancer Cells
DOI:
https://doi.org/10.18311/jnr/2023/32092Keywords:
Cisplatin, Drug Resistance, ETS, NF-κB, P-gp, WedelolactoneAbstract
Drug resistance and poor therapeutic outcomes are the emerging problems pertaining to cisplatin treatment in ovarian cancer. The effectiveness of the conventional chemotherapeutic medication could be improved by combining with natural drugs. In the current study, Wedelolactone (WDL) a natural coumestan, in combination with Cisplatin (Cis) was determined to be a potent anti-cancer drug as evidenced by their capacity to bring about cytotoxicity by decreasing NF-κB expression in PA-1 ovarian cancer cells. “Cell viability assays” were carried out and the effective combination of wedelolactone with Cisplatin were confirmed by PCR and western blot analysis. The determined IC50 (10µM) of WDL displayed advantageous anti-cancer effect in PA-1 cells compared to Cis treatment. Furthermore, the combination of wedelolactone (5µM) and cisplatin(3µM) also down regulated NF-κB expression which is a key player of various cancer promoting events such as drug resistance, apoptotic inhibition, inflammation and angiogenesis. WDL potentiates the sensitivity of PA-1 cells towards cisplatin by decreasing the ETS1 and P-gp expression which are involved in MDR mechanism. Overall, this study suggest that Wedelolactone can be used to sensitize ovarian tumors to standard cancer chemotherapeutics.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gloria Jemmi Christobel Robinson, Shyam Sundar Jaganathan, Abirami MP, Shila Samuel (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-04-21
Published 2023-06-13
References
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology. 2014; 740:364-78. https://doi.org/10.1016/j.ejphar.2014.07.025 DOI: https://doi.org/10.1016/j.ejphar.2014.07.025
Januchowski R, Sterzyńska K, Zaorska K, Sosińska P, Klejewski A, Brązert M, Nowicki M, Zabel M. Analysis of MDR genes expression and cross-resistance in eight drug resistant ovarian cancer cell lines. Journal of Ovarian Research. 2016; 9(1):1-1. https://doi.org/10.1186/s13048-016-0278-z DOI: https://doi.org/10.1186/s13048-016-0278-z
Chen SH, Chang JY. New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment. International journal of molecular sciences. 2019; 20(17):4136. https://doi.org/10.3390/ijms20174136 DOI: https://doi.org/10.3390/ijms20174136
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. International Journal of Molecular Sciences. 2022; 23(3):1532. https://doi.org/10.3390/ijms23031532 DOI: https://doi.org/10.3390/ijms23031532
Kınal ME, Tatlıpınar A, Uzun S, Keskin S, Tekdemir E, Özbeyli D, Akakın D. Investigation of astaxanthin effect on cisplatin ototoxicity in rats by using otoacoustic emission, total antioxidant capacity, and histopathological methods. Ear, Nose and Throat Journal. 2021; 100(4):NP198-205. https://doi.org/10.1177/0145561319866826 DOI: https://doi.org/10.1177/0145561319866826
Dieckmann KP, Struss WJ, Budde U. Evidence for acute vascular toxicity of cisplatin-based chemotherapy in patients with germ cell tumour. Anticancer Research. 2011; 31(12):4501-5.
Vinod BS, Maliekal TT, Anto RJ. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxidants and Redox Signaling. 2013; 18(11):1307-48. https://doi.org/10.1089/ars.2012.4573 DOI: https://doi.org/10.1089/ars.2012.4573
Wilson AJ, Saskowski J, Barham W, Yull F, Khabele D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. Journal of Ovarian Research. 2015; 8(1):1-0. https://doi.org/10.1186/s13048-015-0177-8 DOI: https://doi.org/10.1186/s13048-015-0177-8
Tsuyoshi H, Wong VK, Han Y, Orisaka M, Yoshida Y, Tsang BK. Saikosaponin-d, a calcium mobilizing agent, sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis by facilitating mitochondrial fission and G2/M arrest. Oncotarget. 2017; 8(59):99825. https://doi.org/10.18632/oncotarget.21076 DOI: https://doi.org/10.18632/oncotarget.21076
Chen Q, Qin R, Fang Y, Li H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cellular physiology and biochemistry. 2015; 36(3):956-65. https://doi.org/10.1159/000430270 DOI: https://doi.org/10.1159/000430270
Xie Z, Guo Z, Lei J, Yu J. Scutellarin synergistically enhances cisplatin effect against ovarian cancer cells through enhancing the ability of cisplatin binding to DNA. European Journal of Pharmacology. 2019; 844:9-16. https://doi.org/10.1016/j.ejphar.2018.11.040 DOI: https://doi.org/10.1016/j.ejphar.2018.11.040
Shen H, Liao B, Wan Z, Zhao Y, You Z, Liu J, Lan J, He S. PTOV1 promotes cisplatin-induced chemotherapy resistance by activating the nuclear factor kappa B pathway in ovarian cancer. Molecular Therapy-Oncolytics. 2021; 20:499-507. https://doi.org/10.1016/j.omto.2021.02.008 DOI: https://doi.org/10.1016/j.omto.2021.02.008
Zhang L, Chinnathambi A, Alharbi SA, Veeraraghavan VP, Mohan SK, Zhang G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi Journal of Biological Sciences. 2020; 27(4):1100-6. https://doi.org/10.1016/j.sjbs.2020.02.015 DOI: https://doi.org/10.1016/j.sjbs.2020.02.015
Liu YK, Jia YJ, Liu SH, Ma J. FSTL1 increases cisplatin sensitivity in epithelial ovarian cancer cells by inhibition of NF-κB pathway. Cancer Chemotherapy and Pharmacology. 2021; 87(3):405-14. https://doi.org/10.1007/s00280-020-04215-9 DOI: https://doi.org/10.1007/s00280-020-04215-9
Motohara T, Yoshida GJ, Katabuchi H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. In Seminars in Cancer Biology. Academic Press. 2021; 77:182-193. https://doi.org/10.1016/j.semcancer.2021.03.038 DOI: https://doi.org/10.1016/j.semcancer.2021.03.038
Neophytou CM, Trougakos IP, Erin N, Papageorgis P. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers. 2021; 13(17):4363. https://doi.org/10.3390/cancers13174363 DOI: https://doi.org/10.3390/cancers13174363
Wind NS, Holen I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. International Journal of Breast Cancer. 2011. https://doi.org/10.4061/2011/967419 DOI: https://doi.org/10.4061/2011/967419
Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ, Smith G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel-and olaparib-resistant ovarian cancer cells. British Journal of Cancer. 2016; 115(4):431-41. https://doi.org/10.1038/bjc.2016.203 DOI: https://doi.org/10.1038/bjc.2016.203
Takara K, Obata Y, Yoshikawa E, Kitada N, Sakaeda T, Ohnishi N, Yokoyama T. Molecular changes to HeLa cells on continuous exposure to cisplatin or paclitaxel. Cancer Chemotherapy and Pharmacology. 2006; 58(6):785-93. https://doi.org/10.1007/s00280-006-0226-5 DOI: https://doi.org/10.1007/s00280-006-0226-5
Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N, Gielen J, Merville MP, Bours V. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene. 2003; 22(1):90-7. https://doi.org/10.1038/sj.onc.1206056 DOI: https://doi.org/10.1038/sj.onc.1206056
Zhang Y, Wu J, Ye M, Wang B, Sheng J, Shi B, Chen H. ETS1 is associated with cisplatin resistance through IKKα/NF-κB pathway in cell line MDA-MB-231. Cancer Cell International. 2018; 18(1):1-2. https://doi.org/10.1186/s12935-018-0581-4 DOI: https://doi.org/10.1186/s12935-018-0581-4
Gu L, Zhu N, Findley HW, Woods WG, Zhou M. Identification and characterization of the IKKα promoter: positive and negative regulation by ETS-1 and p53, respectively. Journal of Biological Chemistry. 2004; 279(50):52141-9. https://doi.org/10.1074/jbc.M407915200 DOI: https://doi.org/10.1074/jbc.M407915200
Takai NO, Miyazaki TA, Nishida MA, Nasu KA, Miyakawa IS. c-Ets1 is a promising marker in epithelial ovarian cancer. International Journal of Molecular Medicine. 2002; 9(3):287-92. https://doi.org/10.3892/ijmm.9.3.287 DOI: https://doi.org/10.3892/ijmm.9.3.287
Alvero AB. Recent insights into the role of NF-kappaB in ovarian carcinogenesis. Genome Medicine. 2010; 2(8):1-3. https://doi.org/10.1186/gm177 DOI: https://doi.org/10.1186/gm177
Pundir M, Sharma A, Kumar J. Phytochemicals used as inhibitors in the treatment of ovarian cancer: A Mini-review. Materials Today: Proceedings. 2021. https://doi.org/10.1016/j.matpr.2021.09.505 DOI: https://doi.org/10.1016/j.matpr.2021.09.505
Ghoneum A, Gonzalez D, Afify H, Shu J, Hegarty A, Adisa J, Kelly M, Lentz S, Salsbury F, Said N. Compound C Inhibits Ovarian Cancer Progression via PI3K-AKT-mTOR-NFκB Pathway. Cancers. 2022; 14(20):5099. https://doi.org/10.3390/cancers14205099 DOI: https://doi.org/10.3390/cancers14205099
Ma L, Zhang M, Zhao R, Wang D, Ma Y, Ai L. Plant natural products: promising resources for cancer chemoprevention. Molecules. 2021; 26(4):933. https://doi.org/10.3390/molecules26040933 DOI: https://doi.org/10.3390/molecules26040933
Siddiqui AJ, Jahan S, Singh R, Saxena J, Ashraf SA, Khan A, Choudhary RK, Balakrishnan S, Badraoui R, Bardakci F, Adnan M. Plants in anticancer drug discovery: from molecular mechanism to chemo-prevention. BioMed Research International. 2022. https://doi.org/10.1155/2022/5425485 DOI: https://doi.org/10.1155/2022/5425485
Ali Abdalla YO, Subramaniam B, Nyamathulla S, Shamsuddin N, Arshad NM, Mun KS, Awang K, Nagoor NH. Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. Journal of Tropical Medicine. 2022. https://doi.org/10.1155/2022/5794350 DOI: https://doi.org/10.1155/2022/5794350
Rocha CR, Silva MM, Quinet A, Cabral-Neto JB, Menck CF. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics. 2018; 73. https://doi.org/10.6061/clinics/2018/e478s DOI: https://doi.org/10.6061/clinics/2018/e478s
Pfister DG, Spencer S, Adelstein D, Adkins D, Anzai Y, Brizel DM, Bruce JY, Busse PM, Caudell JJ, Cmelak AJ, Colevas AD. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2020; 873-98. https://doi.org/10.6004/jnccn.2020.0031 DOI: https://doi.org/10.6004/jnccn.2020.0031
Mahapatra MK, Mandal CC. Natural Extracts Target NF-κB and Reactive Oxygen Species: Molecular Insights into Therapy Resistance and Toxicity. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Singapore: Springer Singapore. 2022; 1-28. https://doi.org/10.1007/978-981-16-1247-3_32-1 DOI: https://doi.org/10.1007/978-981-16-1247-3_32-1
Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O’Flaherty JD, Fennell DA, Richard D, O’Leary JJ, O’Byrne KJ. Generation and characterization of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PloS one. 2013; 8(1):e54193. https://doi.org/10.1371/journal.pone.0054193 DOI: https://doi.org/10.1371/journal.pone.0054193
Marinello PC, Panis C, Silva TN, Binato R, Abdelhay E, Rodrigues JA, Mencalha AL, Lopes NM, Luiz RC, Cecchini R, Cecchini AL. Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Scientific Reports. 2019; 9(1):1-1. https://doi.org/10.1038/s41598-019-42357-w DOI: https://doi.org/10.1038/s41598-019-42357-w
Oiso S, Ikeda R, Nakamura K, Takeda Y, Akiyama SI, Kariyazono H. Involvement of NF-κB activation in the cisplatin resistance of human epidermoid carcinoma KCP-4 cells. Oncology Reports. 2012; 28(1):27-32. https://doi.org/10.3892/or.2012.1801 DOI: https://doi.org/10.3892/or.2012.1801
Kato T, Fujita Y, Nakane K, Kojima T, Nozawa Y, Deguchi T, Ito M. ETS1 promotes chemoresistance and invasion of paclitaxel-resistant, hormone-refractory PC3 prostate cancer cells by up-regulating MDR1 and MMP9 expression. Biochemical and Biophysical Research Communications. 2012; 417(3):966-71. https://doi.org/10.1016/j.bbrc.2011.12.047 DOI: https://doi.org/10.1016/j.bbrc.2011.12.047
Vishnoi K, Ke R, Viswakarma N, Srivastava P, Kumar S, Das S, Singh SK, Principe DR, Rana A, Rana B. Ets1 mediates sorafenib resistance by regulating mitochondrial ROS pathway in hepatocellular carcinoma. Cell Death and Disease. 2022; 13(7):1-6. https://doi.org/10.1038/s41419-022-05022-1 DOI: https://doi.org/10.1038/s41419-022-05022-1
Sakamoto K, Endo K, Sakamoto K, Kayamori K, Ehata S, Ichikawa J, Ando T, Nakamura R, Kimura Y, Yoshizawa K, Masuyama K. EHF suppresses cancer progression by inhibiting ETS1-mediated ZEB expression. Oncogenesis. 2021; 10(3):1-5. https://doi.org/10.1038/s41389-021-00313-2 DOI: https://doi.org/10.1038/s41389-021-00313-2