An Overview of the Phytochemical and Pharmacological Profile of the Spurred Mangrove Ceriops tagal (Perr.) C. B. Rob

Jump To References Section

Authors

  • Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Mumbai - 400056, Maharashtra ,IN
  • Department of Chemistry, Bhavan’s College, Mumbai - 400058, Maharashtra ,IN
  • Department of Chemistry, Kirti M. Doongursee College, Mumbai - 400028, Maharashtra ,IN
  • Department of Microbiology, Bhavan’s College, Mumbai - 400058, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jnr/2023/32131

Keywords:

Anticancer, Drug Discovery, Ethnomedicine, Pharmacology, Phytochemistry, Tanga.

Abstract

Plant-based natural compounds have played a significant role in developing a variety of clinically useful therapeutic agents. Mangroves are special salt-tolerant plant communities which are known to produce a range of natural products with unique pharmacological activities. An attempt has been made to review such properties in the mangrove plant Ceriops tagal (Perr.) C. B. Rob. belonging to the Rhizophoraceae family. This species is widely spread across the coastal lines of African, Asian and Australian continents and is also commonly found in India. Traditional healers have been using this plant and its extracts to treat ailments such as ulcers, diabetes and malaria. The plant is a rich source of phytochemicals such as tannins, flavonoids, terpenes, terpenoids, phytosterols and many more novel metabolites which have conferred remarkable pharmacological activities. Reports of antibacterial, antiviral, antioxidant, antifeedant, antifouling and anticancer activities from different parts of this plant highlight its importance as a natural remedy and the need to perform more investigations to discover novel bioactive compounds to further exploit its therapeutic potential.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-23

How to Cite

Manohar, S. M., Yadav, U. M., Kulkarnii, C. P., & Patil, R. C. (2023). An Overview of the Phytochemical and Pharmacological Profile of the Spurred Mangrove <i>Ceriops tagal</i> (Perr.) C. B. Rob. Journal of Natural Remedies, 23(1), 57–72. https://doi.org/10.18311/jnr/2023/32131

Issue

Section

Short Review
Received 2022-12-10
Accepted 2023-01-06
Published 2023-03-23

 

References

Pandey M, Debnath M, Gupta S, Chikara SK. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J Pharmacognosy Phytother. 2011; 3(3):27-37.

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant derived natural products: A review. Biotechnol Adv. 2015; 33(8):1582-1614. PMID: 26281720; PMCID: PMC4748402. https://doi.org/10.1016/j. biotechadv.2015.08.001 DOI: https://doi.org/10.1016/j.biotechadv.2015.08.001

FAO, The world’s mangroves 1980-2005. Forestry Paper; No. 153. Food and Agriculture Organisation of the United Nations, Rome, Italy: FAO. 2007.

Kathiresan K. Mangrove forests of India. Curr Sci. 2018; 114(5):976-981. https://doi.org/10.18520/cs/ v114/i05/976-981 DOI: https://doi.org/10.18520/cs/v114/i05/976-981

Bandaranayake WM. Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manag. 2002; 10:421-452. https:// doi.org/10.1023/A:1021397624349 DOI: https://doi.org/10.1023/A:1021397624349

Giesen W, Wulffraat S, Zieren M, Scholten L. Mangrove Guidebook for Southeast Asia. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand: Wetlands International. 2006.

Ragavan P, Saxena A, Jayaraj RSC, Mohan PM, Ravichandran K, Saravanan S, et al. A review of the mangrove floristics of India. Taiwania. 2016; 61(3):224-42. https://doi.org/10.6165/tai.2016.61.224

India State of Forest Report (ISFR). Chapter 3: Mangrove cover, Forest Survey of India, Ministry of Environment Forest and Climate Change, India: FSI. 2019.

Sathe SS, Lavate RA, Patil SB. Ethnobotanical and Medicinal Aspects of Mangroves from Southern Kokan (Maharashtra). Int J Emerg Trends Pharm Sci. 2014; 3(4):12-7.

Bandaranayake W. Traditional and medicinal uses of mangroves. Mangroves and Salt Marshes. 1998; 2:133-48. https://doi.org/10.1023/A:1009988607044 DOI: https://doi.org/10.1023/A:1009988607044

Baba S, Chan HT, Aksornkoae S. Useful Products from Mangrove and other Coastal Plants. ISME Mangrove Educational Book Series No. 3, Japan: ISME and ITTO. 2013.

Patil RC, Manohar SM, Katchi VI, Rao AJ, Moghe A. Ethanolic stem extract of Excoecaria agallocha induces G1 arrest or apoptosis in human lung cancer cells depending on their P53 Status. Taiwania. 2012; 57(2): 89-98.

Manohar SM. A Review of the botany, phytochemistry and pharmacology of mangrove Lumnitzera racemosa Willd. Pharmacogn Rev. 2021; 15(30):107-16. https:// doi.org/10.5530/phrev.2021.15.13 DOI: https://doi.org/10.5530/phrev.2021.15.13

Simlai A, Roy A. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: an overview. Pharmacogn Rev. 2013; 7(14):170-8. https://doi.org/10.4103/0973- 7847.120518 DOI: https://doi.org/10.4103/0973-7847.120518

Mondal S, Ghosh D, Ramakrishna K. A complete profile on Blind-your-eye mangrove Excoecaria agallocha L. (Euphorbiaceae): Ethnobotany, phytochemistry, and pharmacological aspects. Pharmacogn Rev. 2016; 10(20):123-38. https://doi. org/10.4103/0973-7847.194049 DOI: https://doi.org/10.4103/0973-7847.194049

Sachithanandam V, Lalitha P, Parthiban, A, Mageswaran T, Manmadhan K, Sridhar R. A review on antidiabetic properties of Indian mangrove plants with reference to island ecosystem. Evid Based Complementary Altern Med. 2019; 4305148. https:// doi.org/10.1155/2019/4305148 DOI: https://doi.org/10.1155/2019/4305148

Tomlinson PB. The botany of mangroves. Cambridge, UK: Cambridge University Press. 1986.

Information on Ceriops tagal by the South African National biodiversity Institute http://pza.sanbi.org/ ceriops-tagal

The Useful Tropical Plants Database http://tropical. theferns.info/

Dahdouh-Guebas F, Mathenge C, Kairo JG, Koedam N. Utilization of mangrove wood Products Around Mida Creek (Kenya) Amongst Subsistence and Commercial Users. Econ Bot. 2000; 54(4):513-527. https://doi.org/10.1007/BF02866549 DOI: https://doi.org/10.1007/BF02866549

Mulla TM, Chavan NS. Mangrove diversity along the coast of Ratnagiri, Maharashtra. Curr Bot. 2017; 8:123-6. https://doi.org/10.19071/cb.2017.v8.3225 DOI: https://doi.org/10.19071/cb.2017.v8.3225

Tagal mangrove http://www.flowersofindia.net/ catalog/slides/Tagal%20Mangrove.html

Indian mangroves database by Botanical Survey of India. http://www.bsienvis.nic.in/Database/ IndianMangroves_3941.aspx

Ray T. Customary use of mangrove tree as a folk medicine among the Sundarban resource collectors. Int J Res Human Arts Lit. 2014; 2(4):43-8.

Howes J, Guopei Y, Junxin C, Yuechao C. Exploring the Mangroves: A Mangrove Education Kit for Middle School Teachers. Guangzouh, China: Guangdong Science and Technology Press. 2004.

Ceriops tagal (Perr.) C.B. Robinson. https://www. globinmed.com/index.php?option=com_content &view=article&id=79510:ceriops-tagal-perr-cbrobinson&catid=367:c

Chan EWC, Tangah J, Kezuka M, Hoan HD, Binh CH. Botany uses, chemistry and bioactivities of mangrove plants II: Ceriops tagal. ISME/GLOMIS Electronic Journal. 2015; 13(6):39-43.

Basco MV, Mallare JAMR, Ruiz SLA, Jacob JKS, Divina CC. Evaluation of the phytochemical, antioxidant and cytotoxic properties of Tungog (Ceriops tagal), a Philippine mangrove species. Int J Agric Technol. 2016; 12(7.1):1635-43.

Verenkar N, Krishnan S. Dyeing of cotton and silk with eco-friendly dyes extracted from bark of mangrove species Rhizophora mucronata and Ceriops tagal. Int J Chemtech Res. 2017; 10(12):102-10.

Qadri NN, Jamil K. Chemical constituents of the fruit and hypocotyl of mangrove Ceriops tagal. Pak J Mar Sci. 1993; 2(2):119-22.

Lin P, Fu Q. Environmental Ecology and Economic Utilization of Mangroves in China. Beijing, China: Higher Education Press. 1995.

Bamroongrugsa N. Bioactive Substances from Mangrove Resources. Songklanakarin J Sci Technol. 1999; 21:377-86.

Rastogi RP, Mehrotra BN. Compendium of Indian medicinal Plants. New Delhi, India: Publications and Information Directorate. 1991; 1.

Sudheer NS, Philip R, Bright Singh IS. In vivo screening of mangrove plants for anti WSSV activity in Penaeus monodon, and evaluation of Ceriops tagal as a potential source of antiviral molecules. Aquaculture. 2011; 311:36-41. https://doi. org/10.1016/j.aquaculture.2010.11.016 DOI: https://doi.org/10.1016/j.aquaculture.2010.11.016

Jadhav BL, Quraishi FM, Pagare BG. Evaluation of Antioxidant Properties and Phytochemical analysis in the stem and leaves of Ceriops tagal mangroves. Res J Biotechnol. 2013; 8(9):28-31.

Kiran Kumar M, Mounika SJ, Uday Ranjan T, Sudhakar Rao P, Sandeep BV. Assessment of biochemical, phytochemical and antioxidant activities of eight mangrove plant leaf extracts. Eur J Acad Res. 2014; 2(9):11976-11991. https://doi.org/10.13140/ RG.2.2.35244.92809

Sunita S, Satya Veni P, Srinivasulu A. Assay of antibacterial agents against drug resistant and drug sensitive bacteria and identification of biologically active principles from Ceriops tagal stem extracts. World J Pharm Sci. 2015; 3(7):1381-6.

Bulbul IJ, Begum Y, Jahan N, Khan MM. Preliminary phytochemical screening and antimicrobial potentials of different extracts of Aegiceras corniculatam L. and Ceriops tagal. Pers. Int J Sci: Basic Appl Res. 2017; 36(3):86-95.

Ranjana, Jadhav BL. Phytochemical composition, in vitro studies on α-Amylase and α-Glucosidase inhibitory activity of selected mangrove plants. Int J Pharm Sci Drug Res. 2019; 11(5):181-6. https://doi. org/10.25004/IJPSDR.2019.110505 DOI: https://doi.org/10.25004/IJPSDR.2019.110505

Tongco JVV, Razal RA, Manalo MMQ. A preliminary study on the Total Phenolic Content of Tangal (Ceriops tagal) bark and wood extracts and their fungitoxic properties Abstract. In: Proceedings of the 18th Annual Convention of the Natural Products Society of the Philippines. De La Salle University - Manila, Philippines. 2013.

Istiqomah MA, Hasibuan PAZ, Nuryawan A, Sumaiyah S, Siregar ES, Basyuni M. The anticancer compound Dolichol from Ceriops tagal and Rhizophora mucronata leaves regulates gene expressions in WiDr Colon Cancer. Sains Malays. 2021; 50(1):181-9. https://doi.org/10.17576/jsm-2021-5001-18 DOI: https://doi.org/10.17576/jsm-2021-5001-18

Sachithanandam V, Parthiban A, Lalitha P, Muthukumaran J, Jain M, Elumalai D, et al. Biological evaluation of gallic acid and quercetin derived from Ceriops tagal: insights from extensive in vitro and in silico studies. J Biomol Struct Dyn. 2020; 30:1-13. https://doi.org/10.1080/07391102.2020.1828173 DOI: https://doi.org/10.1080/07391102.2020.1828173

Ni S-J, Li J, Li M-Y. Two new phenylpropanoids from the Chinese mangrove Ceriops tagal. Nat Prod Res. 2018; 32(14):1676-81. https://doi.org/10.1080/14786 419.2017.1395435 DOI: https://doi.org/10.1080/14786419.2017.1395435

Ni S-J, Li J, Li M-Y. Two new Dolabrane Diterpenes from the Chinese mangrove Ceriops tagal. Chem Biodivers. 2018; 15(3):e1700563. https://doi. org/10.1002/cbdv.201700563 DOI: https://doi.org/10.1002/cbdv.201700563

Sura MB, Dangeti N, Ponnapalli MG. Two new Cerioptins (A-B) from the mangrove Ceriops tagal. Chemistry Select. 2018; 3:8926-8929. https://doi. org/10.1002/slct.201801975 DOI: https://doi.org/10.1002/slct.201801975

Zhang X-H, Yang Y, Liu J-J, Shen L, Shi Z, Wu J. Tagalide A and Tagalol A, naturally occurring 5/6/6/6- and 5/6/6-fused cyclic dolabrane-type diterpenes: A new insight into anti-breast cancer activity of the Dolabrane scaffold. Org Chem Front. 2018; 5:1176- 1183. https://doi.org/10.1039/C8QO00010G DOI: https://doi.org/10.1039/C8QO00010G

Zhang X, Li W, Shen L, Wu J. Four new diterpenes from the mangrove Ceriops tagal and structure revision of four dolabranes with a 4, 18-epoxy group. Fitoterapia. 2018; 124:1-7. https://doi.org/10.1016/j. fitote.2017.09.019 DOI: https://doi.org/10.1016/j.fitote.2017.09.019

Lakshmi V, Mahdi AA, Agrawal SK, Kumar R. Isolation and characterization of Bioactive Terpenoids from the leaves of Ceriops tagal Linn. Herb Med. 2017; 3(2):10. https://doi.org/10.21767/2472-0151.100031 DOI: https://doi.org/10.21767/2472-0151.100031

Peng Y, Ni S-J, Li J, Li M-Y. Three new dolabrane diterpenes from the Chinese mangrove plant of Ceriops tagal. Phytochem Lett. 2017; 21:38-41. https:// doi.org/10.1016/j.phytol.2017.05.018 DOI: https://doi.org/10.1016/j.phytol.2017.05.018

Wu X, Liao H, Zhu X, Lu H, Zeng X, Cui L, et al. Two new Dammarane Triterpenes from the leaves of Ceriops tagal. Rec Nat Prod. 2016; 10:628-32.

Wu X, Liao HB, Lu HY, Zhang CH. A new Dolabrane Dinorditerpene from Ceriops tagal. Open Access Library Journal. 2016; 3:e2957. https://doi. org/10.4236/oalib.1102957 DOI: https://doi.org/10.4236/oalib.1102957

Chen Y, Wang WJ, Wu J. Two new dolabranes from the Chinese mangrove Ceriops tagal. J Asian Nat Prod Res. 2016; 18(1):41-5. https://doi.org/10.1080/102860 20.2015.1121998 DOI: https://doi.org/10.1080/10286020.2015.1121998

Zhou H-C, Tam NF, Lin Y-M, Ding Z-H, Chai W-M, Wei S-D. Relationships between degree of polymerization and antioxidant activities: A study on proanthocyanidins from the leaves of a medicinal mangrove plant Ceriops tagal. PLoS One. 2014; 9(10):e107606. https://doi.org/10.1371/journal. pone.0107606 DOI: https://doi.org/10.1371/journal.pone.0107606

Chacha M. Terpenoids from the roots of Ceriops tagal induces apoptosis through activation of caspase-3 enzyme. Int J Biol Chem Sci. 2011; 5(2):402-409. https://doi.org/10.4314/ijbcs.v5i2.72057 DOI: https://doi.org/10.4314/ijbcs.v5i2.72057

Wang X-C, Ouyang X-W, Hu L-H. Three new lupanetype triterpenes from Ceriops tagal. J Asian Nat Prod Res. 2010; 12(7):576-581. https://doi.org/10.1080/102 86020.2010.485566 DOI: https://doi.org/10.1080/10286020.2010.485566

Hu W-M, Li M-Y, Li J, Xiao Q, Feng G, Wu J. Dolabranes from the Chinese Mangrove, Ceriops tagal. J Nat Prod. 2010; 73(10):1701-5. https://doi. org/10.1021/np100484w DOI: https://doi.org/10.1021/np100484w

Ouyang X-W, Wang X-C, Yue Q-X, Hu L-H. A new dolabrane-type diterpene from Ceriops tagal. Nat Prod Commun. 2010; 5(1):9-12. PMID: 20184010. https://doi.org/10.1177/1934578X1000500103 DOI: https://doi.org/10.1177/1934578X1000500103

Chen JD, Feng DQ, Yang ZW, Wang ZC, Qiu Y, Lin YM. Antifouling Metabolites from the Mangrove Plant Ceriops tagal. Molecules. 2008; 13:212-9. https://doi.org/10.3390/molecules13020212 DOI: https://doi.org/10.3390/molecules13020212

Chacha M, Mapitse R, Afolayan AJ, Majinda RRT. Antibacterial Diterpenes from the roots of Ceriops tagal. Nat Prod Commun. 2008; 3(1):17-20. https:// doi.org/10.1177/1934578X0800300104 DOI: https://doi.org/10.1177/1934578X0800300104

He L, Wang Y-S, Wang Q-J. In vitro antitumor activity of triterpenes from Ceriops tagal. Nat Prod Res. 2007; 21(14):1228-33. https://doi. org/10.1080/14786410701369516 DOI: https://doi.org/10.1080/14786410701369516

Fun H-K, Pakhathirathien C, Chantrapromma S, Karalaib C, Chantrapromma K. 7-Ethenyl1-[(Z)-hydroxymethylidene]- 4b,7,10a -trimethylperhydrophenanthren- 2-one. Acta Crystallogr. 2006; E62:o5539-41. https://doi. org/10.1107/S1600536806046277 DOI: https://doi.org/10.1107/S1600536806046277

Zhang Y, Deng Z, Gao T, Proksch P, Lin W. Tagalsins A-H, dolabrane-type diterpenes from the mangrove plant, Ceriops tagal. Phytochemistry. 2005; 66(12):1465-71. https://doi.org/10.1016/j. phytochem.2005.04.018 DOI: https://doi.org/10.1016/j.phytochem.2005.04.018

Zhang Y, Lu Y, Mao L, Proksch P, Lin W. Tagalsins I and J, two novel tetraterpenoids from the mangrove plant, Ceriops tagal. Org Lett. 2005; 7(14):3037-40. https://doi.org/10.1021/ol0509843 DOI: https://doi.org/10.1021/ol0509843

Pakhathirathien C, Karalai C, Ponglimanont C, Subhadhirasakul S, Chantrapromma K. Dammarane triterpenes from the hypocotyls and fruits of Ceriops tagal. J Nat Prod. 2005; 68(12):1787-9. https://doi. org/10.1021/np0502793 DOI: https://doi.org/10.1021/np0502793

Nebula M, Harisankar HS, Chandramohanakumar N. Metabolites and bioactivities of Rhizophoraceae mangroves. Nat Prod Bioprospect. 2013; 3(5):207-32. https://doi.org/10.1007/s13659-013-0012-0 DOI: https://doi.org/10.1007/s13659-013-0012-0

Sudheer NS, Philip R, Bright Singh IS. Anti-white spot syndrome virus activity of Ceriops tagal aqueous extract in giant tiger shrimp Penaeus monodon. Arch Virol. 2012; 157:1665-75. https://doi.org/10.1007/ s00705-012-1346-3 DOI: https://doi.org/10.1007/s00705-012-1346-3

Arivuselvan N, Silambarasan D, Govindan T, Kathiresan K. Antibacterial activity of mangrove leaf and bark extracts against human pathogens. Adv Biol Res. 2001; 5(5):251-4.

Arivuselvan N, Jagadessan D, Govindan T, Kathiresan K, Anantharaman P. In vitro antibacterial activity of leaf and bark extracts of selected mangroves against fish and shrimp pathogens. Glob J Pharmacol. 2011; 5(2):112-6.

Lotlikar G, Naik - Samant S. Antimicrobial activity of mangrove plants of Goa, India against human pathogenic bacteria. In: Proceedings of national seminar on Advances in Life Sciences in Botany, St. Xavier’s College, Goa. India, 2016; pp. 55-61.

Revathi P, Jeyaseelan Senthinath T, Thirumalaikolundusubramanian P, Prabhu N. An overview of antidiabetic profile of mangrove plants. Int J Pharm Pharm Sci. 2014; 6(3):1-5.

Santos AC, Santos GA, Obligacion MB, Olay LP, Fojas FR. Philippine Plants and their Contained Natural Products and their Pharmaceutical Literature Survey. National Research Council of the Philippines, Bicutan, Taguig, Metro Manila, Philippines: NRCP. 1981.

Das SK, Samantaray D, Patra JK, Samanta L, Thatoi H. Antidiabetic potential of mangrove plants: a review. Front Life Sci. 2016; 9(1):75-88. https://doi.org/10.10 80/21553769.2015.1091386 DOI: https://doi.org/10.1080/21553769.2015.1091386

Tiwari P, Tamrakar AK, Ahmad R, Srivastava MN, Kumar R, Lakshmi V, et al. Anti-hyperglycaemic activity of Ceriops tagal in normoglycaemic and streptozotocin-induced diabetic rats. Med Chem Res. 2008; 17:74-84. https://doi.org/10.1007/s00044-007- 9038-3 DOI: https://doi.org/10.1007/s00044-007-9038-3

Tamrakar AK, Kumar R, Sharma R, Balapure AK, Lakshmi V, Srivastava AK. Stimulatory effect of Ceriops tagal on hexose uptake in L6 muscle cells in culture. Nat Prod Res. 2008; 22:592-9. https://doi. org/10.1080/14786410701592885 DOI: https://doi.org/10.1080/14786410701592885

Lawag IL, Aguinaldo AM, Naheed S, Mosihuzzaman M. α-Glucosidase inhibitory activity of selected Philippine plants. J Ethnopharmacol. 2012; 144:217- 9. https://doi.org/10.1016/j.jep.2012.08.019 DOI: https://doi.org/10.1016/j.jep.2012.08.019

Bunyapraphatsara N. Pharmacological studies of plants in the mangrove forest. Thai J Phytopharm. 2003; 10(2):1-12.

Septiana A, Jamili, Harlis WO, Analuddin K. Bioprospecting mangroves: antioxidant source and habitat for the endemic Bubalus sp. in Rawa Aopa Watumohai National park, Indonesia. Malays Appl Biol. 2016; 45(1):23-34.

Du SS, Wang CF, Li J, Zhang HM, Liu QZ, Liu ZL, et al. Antifeedant diterpenoids against Tribolium castaneum from the stems and twigs of Ceriops tagal (Rhizophoraceae). Molecules. 2011; 16(7):6060-7. https://doi.org/10.3390/molecules16076060 DOI: https://doi.org/10.3390/molecules16076060

Sari DP, Basyuni M, Hasibuan PAZ, Wati R, Sumardi. Cytotoxic effect of polyisoprenoids from Rhizophora mucronata and Ceriops tagal leaves against WiDr colon cancer cell lines. Sains Malays. 2018; 47(9): 1953-9. https://doi.org/10.17576/jsm-2018-4709-02 DOI: https://doi.org/10.17576/jsm-2018-4709-02

Quraishi FM, Alim H, Jadhav BL. In vitro evaluation of cytotoxic activity of fruit methanol extract of Ceriops tagal mangrove. Int Res J Pharm. 2017; 8(10):157-9. https://doi.org/10.7897/2230-8407.0810200 DOI: https://doi.org/10.7897/2230-8407.0810200

Yang Y, Zhang Y, Liu D, Li-Weber M, Shao B, Lin W. Dolabrane-Type diterpenes from the mangrove plant Ceriops tagal with antitumor activities. Fitoterapia. 2015; 103:277-82. https://doi.org/10.1016/j. fitote.2015.04.016 DOI: https://doi.org/10.1016/j.fitote.2015.04.016

Neumann J, Yang Y, Kohler R, Giasi M, WitzensHarig M, Liu D, et al. Mangrove dolabrane-type of diterpenes tagalsins suppresses tumor growth via ROS-mediated apoptosis and ATM/ATR-Chk1/ Chk2-regulated cell cycle arrest. Int J Cancer. 2015; 137:2739-48. https://doi.org/10.1002/ijc.29629 DOI: https://doi.org/10.1002/ijc.29629

Dong D, Song X, Xue W, Wei Y. The effect of tagalsin on mice with transplanted H22 hepatocarcinoma. Chinese-German J Clin Oncol. 2011; 10(3):153-56. https://doi.org/10.1007/s10330-011-0754-2 DOI: https://doi.org/10.1007/s10330-011-0754-2

Song X, Dong D, Zhao SP, Liu G. The effect of marine drug candidates tagalsin on bcl-2 and caspase-3 expression in H22 tumor-bearing mice. U.S. Chin J Lymphology Oncol. 2010; 9(4):145-50.

Anderson JE, Goetz CM, McLaughlin JL, Suffness M. A blind comparison of simple bench-top bioassay and human tumour cell cytotoxicities as antitumor prescreens. Phytochem Anal. 1991; 2(3):107-11. https://doi.org/10.1002/pca.2800020303 DOI: https://doi.org/10.1002/pca.2800020303

Ahmed A, Labu ZK, Dey SK, Hira A, Howlader MSI, Hossain MH, et al. Phytochemical screening, antibacterial and cytotoxic activity of different fractions of Xylocarpus mekongensis bark. Ibnosina J Med Biomed Sci. 2013; 5(4):206-13. https://doi. org/10.4103/1947-489X.210546 DOI: https://doi.org/10.4103/1947-489X.210546

Shamsuddin AA, Najiah M, Suvik A, Azariyah MN, Kamaruzzaman BY, Effendy AW, et al. Antibacterial properties of selected mangrove plants against Vibrio species and its cytotoxicity against Artemia salina. World Appl Sci J. 2013; 25(2):333-40. https://doi. org/10.5829/idosi.wasj.2013.25.02.688

Ramasubburayan R, Prakash S, Iyapparaj P, Sumathi S, Thaddaeus BJ, Palavesam A, et al. Investigation on antibacterial, antifungal and cytotoxic properties of chosen mangroves. Indian J Geo-Mar Sci. 2015; 44(11):1769-77.

Bergman ME, Davis B, Phillips MA. Medically useful plant Terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules. 2019; 24(21):3961. https://doi.org/10.3390/molecules24213961 DOI: https://doi.org/10.3390/molecules24213961

Brahmkshatriya PP, Brahmkshatriya PS. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In: Ramawat K, Merillon JM. (eds.) Natural Products. Berlin, Germany: Springer. 2013. https://doi.org/10.1007/978-3-642-22144-6_120 DOI: https://doi.org/10.1007/978-3-642-22144-6_120

Zhang DM, Xu HG, Wang L, Li YJ, Sun PH, Wu XM, et al. Betulinic acid and its derivatives as potential antitumor agents. Med Res Rev. 2015; 35(6):1127-55. https://doi.org/10.1002/med.21353 DOI: https://doi.org/10.1002/med.21353

Choudhary SP, Tran LS. Phytosterols: perspectives in human nutrition and clinical therapy. Curr Med Chem. 2011; 18(29):4557-67. https://doi. org/10.2174/092986711797287593 DOI: https://doi.org/10.2174/092986711797287593

Shahzad N, Khan W, Md S, Ali A, Saluja SS, Sharma S, et al. Al-Ghamdi. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomed Pharmacother. 2017; 88:786-94. https://doi. org/10.1016/j.biopha.2017.01.068 DOI: https://doi.org/10.1016/j.biopha.2017.01.068

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel). 2018; 5(3):93. https://doi.org/10.3390/ medicines5030093 DOI: https://doi.org/10.3390/medicines5030093