Alpinia zerumbet: A Review of the Chemistry, Quantity, and Pharmacological Properties of Selected Kavalactones
DOI:
https://doi.org/10.18311/jnr/2023/32132Keywords:
Dihydro-5,6-dehydrokawain, 5,6-Dehydrokawain, HispidinAbstract
Alpinia zerumbet or shell ginger is a ginger plant with diverse chemical constituents and medicinal and non-medicinal uses. Dihydro-5,6-dehydrokawain (DDK) and Dehydrokawain (DK) are two kavalactones (also known as kava pyrones or styrylpyrones) from A. zerumbet. Both DDK and DK have a carbonyl group at C2, a methoxy group at C4, and a double bond at C5 and C6. DK has a double bond at C7 and C8 that is absent in DDK. Quantity of DDK in A. zerumbet can be ranked as rhizome > leaf > flower > stem > seed. The pericarp and seed placenta of the fruit has higher quantity of DDK than the leaf. In most plant parts, the contents of DDK are higher than those of DK. Hispidin (HP) is synthesized from DK by hydrolysis. These three kavalactones from A. zerumbet have the most promising pharmacological properties that include insecticidal, fungicidal, antioxidant, inhibition of enzymes, inhibition of Advanced Glycation End-products (AGEs), inhibition of p21-activated kinase 1 (PAK1), inhibition of LIM domain kinase 1 (LIMK1), promotion of hair growth, anti-cancer, inhibition of melanogenesis, anti-inflammatory, anti-obesity, HIV-1 integrase inhibition, neuraminidase inhibition, osteogenic, anti-platelet aggregation, cytoprotective, anti-ulcerative, and singlet oxygen quenching activities. Some fields for further research are suggested. Sources of information in this review were from Google, Google Scholar, Science Direct, PubMed, J-Stage, China National Knowledge Infrastructure (CNKI), and PubChem.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eric Wei Chiang Chan, Mio Kezuka, Hung Tuck Chan, Siu Kuin Wong (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-04-25
Published 2023-07-03
References
Wu DL, Larsen K. Alpinia. In: Zingiberaceae. Flora China. 2000; 24:322−77.
Zhang WJ, Luo JG, Kong LY. The genus Alpinia: A review of its phytochemistry and pharmacology. World J Tradit Chin Med. 2016; 2(1):26−41. https://doi.org/10.15806/j.issn.2311-8571.2015.0026 DOI: https://doi.org/10.15806/j.issn.2311-8571.2015.0026
Victório CP. Therapeutic value of the genus Alpinia, Zingiberaceae. Brazil J Pharmacogn. 2011; 21:194−201. https://doi.org/10.1590/S0102-695X2011005000025 DOI: https://doi.org/10.1590/S0102-695X2011005000025
Ma XN, Xie CL, Miao Z, Yang Q, Yang XW. An overview of chemical constituents from Alpinia species in the last six decades. RSC Adv. 2017; 7(23):14114−44. https://doi.org/10.1039/C6RA27830B DOI: https://doi.org/10.1039/C6RA27830B
Chan EWC, Wong SK, Chan HT. Alpinia zerumbet, a ginger plant with a multitude of medicinal properties: an update on its research findings. J Chin Pharm Sci. 2017; 26(11): 775−88. https://doi.org/10.5246/jcps.2017.11.088 DOI: https://doi.org/10.5246/jcps.2017.11.088
Wu MH, Zhang W, Guo P, Zhao ZZ. Identification of seven Zingiberaceous species based on the comparative anatomy of microscopic characteristics of seeds. Chin Med. 2014; 9(1):1−7. http://www.cmjournal.org/content/9/1/10 https:// doi.org/10.1186/1749-8546-9-10 DOI: https://doi.org/10.1186/1749-8546-9-10
Ji YP, Shi TY, Zhang YY, Lin D, Linghu KG, Xu YN, et al. Essential oil from Fructus Alpinia zerumbet (fruit of Alpinia zerumbet (Pers.) Burtt. et Smith) protected against aortic endothelial cell injury and inflammation in vitro and in vivo. J Ethnopharmacol. 2019; 237:149−58. https://doi. org/10.1016/j.jep.2019.03.011 DOI: https://doi.org/10.1016/j.jep.2019.03.011
Xiao T, Huang J, Wang X, Wu L, Zhou X, Jiang F, et al. Alpinia zerumbet and its potential use as an herbal medication for atherosclerosis: mechanistic insights from cell and rodent studies. Lifestyle Genom. 2020; 13(5):138−45. https://doi. org/10.1159/000508818 DOI: https://doi.org/10.1159/000508818
Chan EWC, Lim YY, Wong LF, Lianto FS, Wong SK, Lim KK, Joe CE, Lim TY. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008; 109(3):477−83. https://doi.org/10.1016/j.foodchem.2008.02.016 DOI: https://doi.org/10.1016/j.foodchem.2008.02.016
Tawata S, Fukuta M, Xuan TD, Deba F. Total utilization of tropical plants Leucaena leucocephala and Alpinia zerumbet. J Pest Sci. 2008; 33(1):40−3. https://doi.org/10.1584/jpestics. R07-10 DOI: https://doi.org/10.1584/jpestics.R07-10
Murakami S, Li W, Matsuura M, Satou T, Hayashi S, Koike K. Composition and seasonal variation of essential oil in Alpinia zerumbet from Okinawa Island. J Nat Med. 2009; 63(2):204−8. https://doi.org/10.1007/s11418-008- 0306-4 DOI: https://doi.org/10.1007/s11418-008-0306-4
Chen TL, Chen PW, Tsung TT. Taiwan aboriginal traditional Alpinia zerumbet handicraft preparation study. Conf Proc Int Assoc Soc Design Res. 2013. www.design-cu.jp/iasdr 2013/papers/1485-1b.pdf.
Mpalantinos MA, Soares de Moura R, Parente JP, Kuster RM. Biologically active flavonoids and kava pyrones from the aqueous extract of Alpinia zerumbet. Phytother Res. 1998; 12(6):442−4. https://doi.org/10.1002/(SICI)1099-1573(199809)12:6<442::AID-PTR320>3.0.CO;2-Y DOI: https://doi.org/10.1002/(SICI)1099-1573(199809)12:6<442::AID-PTR320>3.0.CO;2-Y
Xuan TD, Teschke R. Dihydro-5,6-dehydrokavain (DDK) from Alpinia zerumbet: its isolation, synthesis, and characterization. Molecules. 2015; 20(9):16306−19. https://doi.org/10.3390/molecules200916306 DOI: https://doi.org/10.3390/molecules200916306
Kimura Y, Takido M, Nakano K, Takishita M. Studies on the constituents of Alpinia. X. On the constituents of the rhizomata of Alpinia speciosa K. Schumann and A. kumatake Makino (A. formosana K. Schumann). J Pharm Soc Jpn. 1966; 86(12):1184−6. https://doi.org/10.1248/yakushi1947.86.12_1184 DOI: https://doi.org/10.1248/yakushi1947.86.12_1184
Kuster RM, Mpalantinos MA, de Holanda MC, Lima P, Brand ET. GC-MS determination of kava-pyrones in Alpinia zerumbet leaves. J High-Res Chromatogr. 1999; 22(2):129−30. https://doi.org/10.1002 (SICI)1521-4168 (19990201)22:2<129::AID-JHRC129>3.0.CO;2-R DOI: https://doi.org/10.1002/(SICI)1521-4168(19990201)22:2<129::AID-JHRC129>3.0.CO;2-R
Nguyen BCQ, Taira N, Tawata S. Several herbal compounds in Okinawa plants directly inhibit the oncogenic/ aging kinase PAK1. Drug Discov Ther. 2014; 8(6):238−44. https://doi.org/10.5582/ddt.2014.01045 DOI: https://doi.org/10.5582/ddt.2014.01045
Tu PTB, Tawata S. Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes. Molecules. 2014; 19(10):16656−71. https://doi.org/10.3390/molecules191016656 DOI: https://doi.org/10.3390/molecules191016656
Tawata S, Taira S, Kobamoto N, Ishihara M, Toyama S. Syntheses and biological activities of dihydro-5,6-dehydrokawain derivatives. Biosci Biotechnol Biochem. 1996; 60(10):1643−5. https://doi.org/10.1271/ bbb.60.1643 DOI: https://doi.org/10.1271/bbb.60.1643
Elzaawely AA, Xuan TD, Tawata S. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) BL Burtt. and RM Sm. and their antioxidant activity. Food Chem. 2007; 103(2):486−94. https://doi.org/10.1016/j.foodchem.2006.08.025 DOI: https://doi.org/10.1016/j.foodchem.2006.08.025
Elzaawely AA, Xuan TD, Koyama H, Tawata S. Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) BL Burtt. and RM Sm. Food Chem. 2007; 104(4):1648−53. https://doi.org/10.1016/j.foodchem.2007.03.016 DOI: https://doi.org/10.1016/j.foodchem.2007.03.016
Chompoo J, Upadhyay A, Kishimoto W, Makise T, Tawata S. Advanced glycation end products inhibitors from Alpinia zerumbet rhizomes. Food Chem. 2011; 129(3):709−15. https://doi.org/10.1016/j.foodchem.2011.04.034 DOI: https://doi.org/10.1016/j.foodchem.2011.04.034
Chompoo J, Upadhyay A, Fukuta M, Tawata S. Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes. BMC Complement Altern Med. 2012; 12(1):1−9. https://doi.org/10.1186/1472-6882-12- 106 DOI: https://doi.org/10.1186/1472-6882-12-106
Nishidono Y, Okada R, Iwama Y, Okuyama T, Nishizawa M, Tanaka K. Anti-inflammatory kavalactones from Alpinia zerumbet. Fitoterapia. 2020; 140:104444. https://doi. org/10.1016/j.fitote.2019.104444 DOI: https://doi.org/10.1016/j.fitote.2019.104444
Elzaawely AA, Xuan TD, Tawata S. Changes in essential oil, kava pyrones and total phenolics of Alpinia zerumbet (Pers.) BL Burtt. and RM Sm. leaves exposed to copper sulphate. Environ Exper Bot. 2007; 59(3):347−53. https:// doi.org/10.1016/j.envexpbot.2006.04.007 DOI: https://doi.org/10.1016/j.envexpbot.2006.04.007
da Cruz JD, Mpalantinos MA, Ramos ADS, Ferreira JLP, de Oliveira AA, Júnior NLN, et al. Chemical standardization, antioxidant activity, and phenolic contents of cultivated Alpinia zerumbet preparations. Ind Crop Prod. 2020; 151:112495. https://doi.org/10.1016/j.indcrop.2020.112495 DOI: https://doi.org/10.1016/j.indcrop.2020.112495
Itokawa H, Yoshimoto S, Morita H. Diterpenes from the rhizomes of Alpinia formosana. Phytochemistry. 1988; 27(2):435−8. https://doi.org/10.1016/0031-9422(88)83115-7 28. Dong H, Chen SX, Xu HX, Kadota S, Namba T. A new antiplatelet diarylheptanoid from Alpinia blepharocalyx. J Nat Prod. 1998; 61(1):142−4. https://doi.org/10.1021/np970293i DOI: https://doi.org/10.1016/0031-9422(88)83115-7
Habsah M, Abas F, Permana D, Lajis NH, Ali AM, Sukari MA, et al. DPPH free radical scavenger components from the fruits of Alpinia rafflesiana Wall. ex. Bak. (Zingiberaceae). Z Naturforsch C. 2004; 59:811−5. https://doi.org/10.1515/znc-2004-11-1208 DOI: https://doi.org/10.1515/znc-2004-11-1208
Nuntawong N, Suksamrarn A. Chemical constituents of the rhizomes of Alpinia malaccensis. Biochem Syst Ecol. 2008; 8(36):661−4. https://doi.org/10.1016/j.bse.2008.04.003 DOI: https://doi.org/10.1016/j.bse.2008.04.003
Malami I, Abdul AB, Abdullah R, Kassim NK, Rosli R, Yeap SK, et al. Crude extracts, flavokawain B and alpinetin compounds from the rhizome of Alpinia mutica induce cell death via UCK2 enzyme inhibition and in turn reduce 18S rRNA biosynthesis in HT-29 cells. PLoS One. 2017; 12(1):e0170233. https://doi.org/10.1371/journal. pone.0170233 DOI: https://doi.org/10.1371/journal.pone.0170233
Kidruangphokin M, Suphrom N, Thanyawasit P, Thammasorn P, Boonphong S. α-Glucosidase inhibitory activity of styrylpyrone and flavonoids isolated from Alpinia mutica Roxb. seed. Med Plant. 2022; 14(3):441−7. https://doi.org/10.5958/0975-6892.2022.00047.8 DOI: https://doi.org/10.5958/0975-6892.2022.00047.8
Tuchinda P, Reutrakul V, Claeson P, Pongprayoon U, Sematong T, Santisuk T, et al. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry. 2002; 59(2):169−173. https:// doi.org/10.1016/S0031-9422(01)00451-4 DOI: https://doi.org/10.1016/S0031-9422(01)00451-4
Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, et al. A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line. Scientifica. 2022; 9130252:17. https://doi.org/10.1155/2022/9130252 DOI: https://doi.org/10.1155/2022/9130252
Chate W, Nuntawong N. Diterpenes and kawalactone from the rhizomes of Amomum uliginosum J. Koenig. Biochem Syst Ecol. 2015; 63:34−7. https://doi.org/10.1016/j. bse.2015.09.019 DOI: https://doi.org/10.1016/j.bse.2015.09.019
Xuan TD, Fukuta M, Wei AC, Elzaawely AA, Khanh TD, Tawata S. Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots. J Nat Med. 2008; 62(2):188−94. https://doi.org/10.1007/s11418-007- 0203-2 DOI: https://doi.org/10.1007/s11418-007-0203-2
Lee IK, Yun BS. Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus spp., and their medicinal importance. Journal of Antibiotics. 2011; 64(5): 349−59. https://doi.org/10.1038/ja.2011.2 DOI: https://doi.org/10.1038/ja.2011.2
Palkina KA, Ipatova DA, Shakhova ES, Balakireva AV, Markina NM. Therapeutic potential of hispidin-fungal and plant polyketide. J Fungi. 2021; 7(5):323−36. https://doi. org/10.3390/jof7050323 DOI: https://doi.org/10.3390/jof7050323
Chen W, Feng L, Huang Z, Su H. Hispidin produced from Phellinus linteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation. Chem Biol Interact. 2012; 199(3):137−42. https://doi.org/10.1016/j.cbi.2012.07.001 DOI: https://doi.org/10.1016/j.cbi.2012.07.001
Jang JS, Lee JS, Lee JH, Kwon DS, Lee KE, Lee SY, et al. Hispidin produced from Phellinus linteus protects pancreatic β-cells from damage by hydrogen peroxide. Arch Pharm Res. 2010; 33(6):853−61. https://doi.org/10.1007/ s12272-010-0607-5 DOI: https://doi.org/10.1007/s12272-010-0607-5
Shao HJ, Jeong JB, Kim KJ, Lee SH. Anti-inflammatory activity of mushroom-derived hispidin through blocking of NF-κB activation. J Sci Food Agric. 2015; 95(12):2482−6. https://doi.org/10.1002/jsfa.6978 DOI: https://doi.org/10.1002/jsfa.6978
Chen W, Shen Y, Su H, Zheng X. Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chem Biol Interact. 2014; 219:83−9. https://doi.org/10.1016/j. cbi.2014.05.010 DOI: https://doi.org/10.1016/j.cbi.2014.05.010
Park IH, Jeon SY, Lee HJ, Kim SI, Song KS. A β-secretase (BACE1) inhibitor hispidin from the mycelial cultures of Phellinus linteus. Planta Med. 2004; 70(2):143−6. https://doi.org/10.1055/s-2004-815491 DOI: https://doi.org/10.1055/s-2004-815491
Yeom JH, Lee IK, Ki DW, Lee MS, Seok SJ, Yun BS. Neuraminidase inhibitors from the culture broth of Phellinus linteus. Mycobiology. 2012; 40(2):142−4. https:// doi.org/10.5941/MYCO.2012.40.2.142 DOI: https://doi.org/10.5941/MYCO.2012.40.2.142
Singh RBAM, Barden A, Mori T, Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001; 44(2):129−46. https://doi.org/10.1007/s001250051591 DOI: https://doi.org/10.1007/s001250051591
Vlassara H, Palace MR. Diabetes and advanced glycation end-products. J Intern Med. 2002; 251(2):87−101. https:// doi.org/10.1046/j.1365-2796.2002.00932.x DOI: https://doi.org/10.1046/j.1365-2796.2002.00932.x
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets. 2010; 14(7):703−25. https://doi. org/10.1517/14728222.2010.492779 DOI: https://doi.org/10.1517/14728222.2010.492779
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: A practical approach towards PAK1-dependent diseases and longevity. Phytother Res. 2014; 28(5): 656−72. https://doi.org/10.1002/ptr.5054 DOI: https://doi.org/10.1002/ptr.5054
Mohankumar A, Sundararaj P, Tawata S. p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev. 2021; 71:101443. https://doi.org/10.1016/j. arr.2021.101443 DOI: https://doi.org/10.1016/j.arr.2021.101443
Yanase S, Luo Y, Maruta H. PAK1-deficiency/ down-regulation reduces brood size, activates HSP16.2 gene, and extends lifespan in Caenorhabditis elegans. Drug Discov Ther. 2013; 7(1):29−35. https://doi.org/10.5582/ ddt.2013.v7.1.29 DOI: https://doi.org/10.5582/ddt.2013.v7.1.29
Nguyen BCQ, Taira N, Maruta H, Tawata S. Artepillin C and other herbal PAK1-blockers: effects on hair cell proliferation and related PAK1-dependent biological function in cell culture. Phytother Res. 2016; 30(1):120−7. https://doi.org/10.1002/ptr.5510 DOI: https://doi.org/10.1002/ptr.5510
Scott RW, Olson MF. LIM kinases: function, regulation, and association with human disease. J Mol Med. 2007; 85(6):555−68. https://doi.org/10.1007/s00109-007-0165-6 DOI: https://doi.org/10.1007/s00109-007-0165-6
Ben Zablah Y, Zhang H, Gugustea R, Jia Z. LIM-kinases in synaptic plasticity, memory, and brain diseases. Cells. 2021; 10(8):2079−103. https://doi.org/10.3390/ cells10082079 DOI: https://doi.org/10.3390/cells10082079
Taira N, Nguyen BCQ, Tawata S. Hair growth promoting and anticancer effects of p21-activated kinase 1 (PAK1) inhibitors isolated from different parts of Alpinia zerumbet. Molecules. 2017; 22(1):132−42. https://doi.org/10.3390/ molecules22010132 DOI: https://doi.org/10.3390/molecules22010132
Roman WA, Gomes DB, Zanchet B, Schönell AP, Diel KA, Banzato TP, et al. Antiproliferative effects of pinostrobin and 5,6-dehydrokavain isolated from leaves of Alpinia zerumbet. Brazil J Pharmacogn. 2017; 27:592−8. https://doi. org/10.1016/j.bjp.2017.05.007 DOI: https://doi.org/10.1016/j.bjp.2017.05.007
Zahra MH, Salem TA, El-Aarag B, Yosri N, El-Ghlban S, Zaki K, et al. Alpinia zerumbet (Pers.): Food and medicinal plant with potential in vitro and in vivo anti-cancer activities. Molecules. 2019; 24(13):2495−509. https://doi.org/10.3390/ molecules24132495 DOI: https://doi.org/10.3390/molecules24132495
Tu PTB, Chompoo J, Tawata S. Hispidin and related herbal compounds from Alpinia zerumbet inhibit both PAK1-dependent melanogenesis in melanocytes and reactive oxygen species (ROS) production in adipocytes. Drug Discov Ther. 2015; 9(3):197−204. https://doi.org/10.5582/ddt.2015.01038 DOI: https://doi.org/10.5582/ddt.2015.01038
Shahinozzaman M, Ishii T, Gima S, Nguyen BCQ, Hossain MA, Tawata S. Anti-inflammatory and anti-melanogenic effects of major leaf components of Alpinia zerumbet var. excelsa. Pharmacogn Mag. 2018; 14(58):578−86. https:// doi.org/10.4103/pm.pm_136_18 DOI: https://doi.org/10.4103/pm.pm_136_18
Upadhyay A, Chompoo J, Kishimoto W, Makise T, Tawata S. HIV-1 integrase and neuraminidase inhibitors from Alpinia zerumbet. J Agric Food Chem. 2011; 59(7):2857−62. https://doi.org/10.1021/jf104813k DOI: https://doi.org/10.1021/jf104813k
Liao C, Marchand C, Burke Jr, TR, Pommier Y, Nicklaus MC. Authentic HIV-1 integrase inhibitors. Future Med Chem. 2010; 2(7):1107−22. https://doi.org/10.4155/ fmc.10.199 DOI: https://doi.org/10.4155/fmc.10.199
Blanco JL, Whitlock G, Milinkovic A, Moyle G. HIV integrase inhibitors: A new era in the treatment of HIV. Expert Opin Pharmacother. 2015; 16(9):1313−24. https://doi.org/10.1517/14656566.2015.1044436 DOI: https://doi.org/10.1517/14656566.2015.1044436
Gubareva LV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. Lancet. 2000; 355:827−35. https://doi.org/10.1016/S0140-6736(99)11433-8 DOI: https://doi.org/10.1016/S0140-6736(99)11433-8
Smith BJ, McKimm-Breshkin JL, McDonald M, Fernley RT, Varghese JN, Colman PM. Structural studies of the resistance of influenza virus neuramindase to inhibitors. J Med Chem. 2002; 45(11):2207−12. https://doi.org/10.1021/jm010528u DOI: https://doi.org/10.1021/jm010528u
Kumagai M, Mishima T, Watanabe A, Harada T, Yoshida I, Fujita K, et al. 5,6-Dehydrokawain from Alpinia zerumbet promotes osteoblastic MC3T3-E1 cell differentiation. Biosci Biotechnol Biochem. 2016; 80(7):1425−32. https://doi.org/10.1080/09168451.2016.1153959 DOI: https://doi.org/10.1080/09168451.2016.1153959
Kumagai M, Nishikawa K, Mishima T, Yoshida I, Ide M, Koizumi K, et al. Synthesis of novel 5,6-dehydrokawain analogs as osteogenic inducers and their action mechanisms. Bioorg Med Chem Lett. 2017; 27(11):2401−6. https://doi. org/10.1016/j.bmcl.2017.04.016 DOI: https://doi.org/10.1016/j.bmcl.2017.04.016
Kumagai M, Nishikawa K, Mishima T, Yoshida I, Ide M, Watanabe A, et al. Fluorinated kavalactone inhibited RANKL-induced osteoclast differentiation of RAW264 cells. Biol Pharm Bull. 2020; 43(5):898−903. https://doi. org/10.1248/bpb.b20-00063 DOI: https://doi.org/10.1248/bpb.b20-00063
Teng CM, Hsu SY, Lin CH, Yu SM, Wang KJ, Lin MH, et al. Antiplatelet action of dehydrokawain derivatives isolated from Alpinia speciosa rhizoma. Chin J Physiol. 1990; 33(1):41−8.
Rao YK, Shih HN, Lee YC, Cheng WT, Hung HC, Wang HC, et al. Purification of kavalactones from Alpinia zerumbet and their protective actions against hydrogen peroxide-induced cytotoxicity in PC12 cells. J Biosci Bioeng. 2014; 118(6):679−88. https://doi.org/10.1016/j. jbiosc.2014.05.009 DOI: https://doi.org/10.1016/j.jbiosc.2014.05.009
You H, He M, Pan D, Fang G, Chen Y, Zhang X, et al. Kavalactones isolated from Alpinia zerumbet (Pers.) Burtt. et Smith with protective effects against human umbilical vein endothelial cell damage induced by high glucose. Nat Prod Res. 2022; 36(22):5740−6. https://doi.org/10.1080/14786419.2021.2023866 DOI: https://doi.org/10.1080/14786419.2021.2023866
Hsu SY, Lin MH, Lin LC, Chou CJ. Toxicologic studies of dihydro-5,6-dehydrokawain an 5,6-dehydrokawain. Planta Medica. 1994; 60(1):88−90. https://doi.org/10. 1055/s-2006-959417 DOI: https://doi.org/10.1055/s-2006-959417
Tsai TH, Hsu SY, Chou CJ, Tsai TR, Chen CF. Determination of dihydro-5,6-dehydrokawain in rat plasma by HPLC and its pharmacokinetics application. J Liq Chromatogr Relat Technol. 1996; 19(7):1127−37. https://doi.org/10.1080/10826079608006307 DOI: https://doi.org/10.1080/10826079608006307
Liao MC, Arakaki H, Li Y, Takamiyagi A, Tawata S, Aniya Y, et al. Inhibitory effects of Alpinia speciosa K. Schum on the porphyrin photooxidative reaction. J Dermatol. 2000; 27(5):312−7. https://doi.org/10.1111/j.1346-8138.2000. tb02173.x DOI: https://doi.org/10.1111/j.1346-8138.2000.tb02173.x