In Vitro Pharmacological Evaluation of Fulvic Acid and Humic Acid Novel Combination in Amyloid Beta Intoxicated SH-SY5Y Cell Lines Model of Alzheimer’s Disease

Jump To References Section

Authors

  • Department of Pharmaceutical Chemistry, Vinayaka Mission’s College of Pharmacy, Salem - 636008, Tamil Nadu, India ,IN
  • Department of Pharmaceutical Chemistry, Vinayaka Mission’s College of Pharmacy, Salem - 636008, Tamil Nadu, India ,IN

DOI:

https://doi.org/10.18311/jnr/2023/32992

Keywords:

Alzheimer’s Disease, Cytokines, Dementia, Fulvic Acid, Humic Acid, Neurodegeneration

Abstract

Alzheimer’s disease is the most widespread advancing neurodegenerative disorder, and it is estimated that more than 50 million people have been affected worldwide. It is characterized by dementia, loss of sensory and motor function and difficulty in performing work. NMDA antagonists and acetylcholinesterase inhibitors are currently being used as treatment options for AD, but the treatment would not decline the disease progression as well as neurodegeneration. We used a unique humic acid and Fulvic acid mixture in the current investigation for the treatment of amyloid-β intoxicated Alzheimer’s in vitro model in SH-SY5Y cell line. Humic acid and fulvic acids are organic substances which will be produced by microorganism from the biomass such as dead matter of animal as well as plants. Both the components were used in the 1:1 ratio against AD induced cell line with optimum concentration 50μM/ml of each compound. The inflammatory mediators like Reactive Oxygen Species (ROS) were estimated using flow cytometry - H2DCFDA staining assay and cytokines such as TNF-α and IL-1β levels were estimated using ELISA. The results obtained from present study implicating that the humic acid and fulvic acids and their novel combinations lessen the ROS, cytokines level and decreased the apoptosis levels there by it exhibiting the neuro-protective mechanism via inhibiting neuro-inflammatory pathway in AD.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-05

How to Cite

Govindhasamy, T., & Mohan, K. (2023). <i>In Vitro</i> Pharmacological Evaluation of Fulvic Acid and Humic Acid Novel Combination in Amyloid Beta Intoxicated SH-SY5Y Cell Lines Model of Alzheimer’s Disease. Journal of Natural Remedies, 23(4), 1437–1448. https://doi.org/10.18311/jnr/2023/32992

Issue

Section

Research Articles
Received 2023-02-12
Accepted 2023-08-31
Published 2023-11-05

 

References

Moreira-Silva D, Carrettiero DC, Oliveira AS, Rodrigues S, dos Santos-Lopes J, Canas PM, Cunha RA, Almeida MC, Ferreira TL. Anandamide effects in a streptozotocin-induced Alzheimer’s disease-like sporadic dementia in rats. Frontiers in Neuroscience. 2018; 12:653. https://doi.org/10.3389/ fnins.2018.00653 PMid:30333717 PMCid: PMC6176656 DOI: https://doi.org/10.3389/fnins.2018.00653

Li J, Sun M, Cui X, Li C. Protective effects of flavonoids against Alzheimer’s Disease: Pathological hypothesis, potential targets, and structure–activity relationship. International Journal of Molecular Sciences. 2022; 23(17):10020.https://doi.org/10.3390/ijms231710020 PMid:36077418 PMCid:PMC9456554 DOI: https://doi.org/10.3390/ijms231710020

Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A. Computer-aided drug design of β-secretase, γ-secretase and anti-tau inhibitors for the discovery of novel Alzheimer’s therapeutics. International Journal of Molecular Sciences. 2020; 21(3):703. https://doi.org/10.3390/ijms21030703 PMid:31973122 PMCid:PMC7038192 DOI: https://doi.org/10.3390/ijms21030703

Wang H, Xu Y, Yan J, Zhao X, Sun X, Zhang Y, Guo J, Zhu C. Acteoside protects human neuroblastoma SH-SY5Y cells against β-amyloid-induced cell injury. Brain research. 2009; 1283:139-47. https://doi.org/10.1016/j.brainres.2009.05.101 PMid:19520063 DOI: https://doi.org/10.1016/j.brainres.2009.05.101

Babyvanitha S, B Jaykar. GC-MS, molecular docking and In Vitro studies of methanolic extract of leaves of Jatropha gossypiifolia as potent anti-alzheimer’s. International Journal of Pharmaceutical Sciences Review and Research. 2021; 68(1):220-7. https://doi.org/10.47583/ijpsrr.2021.v68i01.034 DOI: https://doi.org/10.47583/ijpsrr.2021.v68i01.034

Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1--42) and A beta(25--35). J Am Chem Soc. 2001;123(24):5625-31. https://doi.org/10.1021/ja010452r PMid:11403592 DOI: https://doi.org/10.1021/ja010452r

Stepanichev M, Zdobnova I, Zarubenko I, Lazareva N, Gulyaeva NV. Differential effects of tumor necrosis factoralpha co-administered with amyloid beta-peptide (25–35) on memory function and hippocampal damage in rat. Behavioural brain research. 2006; 175(2):352-61. https://doi.org/10.1016/j.bbr.2006.09.006 PMid:17070605 DOI: https://doi.org/10.1016/j.bbr.2006.09.006

Pattanashetti LA, Taranalli AD, Parvatrao V, Malabade RH, Kumar D. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Indian Journal of Pharmacology. 2017; 49(1):60.

Murbach TS, Glávits R, Endres JR, Clewell AE, Hirka G, Vértesi A, Béres E, Szakonyiné IP. A toxicological evaluation of a fulvic and humic acids preparation. Toxicology reports. 2020; 7:1242-54. https://doi.org/10.1016/j.toxrep.2020.08.030 PMid:32995299 PMCid:PMC7505752 DOI: https://doi.org/10.1016/j.toxrep.2020.08.030

Carrasco-Gallardo C, Guzmán L, Maccioni RB. Shilajit: A natural phytocomplex with potential procognitive activity. International Journal of Alzheimer’s disease. 2012; 2012.

https://doi.org/10.1155/2012/674142 PMid:22482077 PMCid: PMC3296184 DOI: https://doi.org/10.1155/2012/674142

Shikalgar TS, Naikwade NS. Cardioprotective effect of fulvic acid on doxorubicin induced cardiac oxidative stress in rats. Int. J. Pharm. Sci. Res. 2018; 9(8):3264-73. https:// doi.org/10.13040/IJPSR.0975-8232.9(8).3264-73

Winkler J, Ghosh S. Therapeutic potential of fulvic acid in chronic inflammatory diseases and diabetes. Journal of Diabetes Research. 2018; 2018. https://doi.org/10.1155/2018/5391014 PMid:30276216 PMCid:PMC6151376 DOI: https://doi.org/10.1155/2018/5391014

Swat M, Rybicka I, Gliszczyńska-Świgło A. Characterization of fulvic acid beverages by mineral profile and antioxidant capacity. Foods. 2019; 8(12):605. https://doi.org/10.3390/foods8120605 PMid:31766604 PMCid:PMC6963745 DOI: https://doi.org/10.3390/foods8120605

Cornejo A, Jiménez JM, Caballero L, Melo F, Maccioni RB. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer’s disease. Journal of Alzheimer’s disease. 2011; 27(1):143-53. https://doi.org/10.3233/JAD-2011-110623 PMid:21785188 DOI: https://doi.org/10.3233/JAD-2011-110623

Ozkan A, Sen HM, Sehitoglu I, Alacam H, Guven M, Aras AB, Akman T, Silan C, Cosar M, Karaman HI. Neuroprotective effect of humic acid on focal cerebral ischemia injury: An experimental study in rats. Inflammation. 2015; 38(1):32-9. https://doi.org/10.1007/s10753-014-0005-0 PMid:25173888 DOI: https://doi.org/10.1007/s10753-014-0005-0

Vetvicka V, Garcia-Mina JM, Proctor M, Yvin JC. Humic acid and glucan: Protection against liver injury induced by carbon tetrachloride. Journal of medicinal food. 2015; 18(5):572-7. https://doi.org/10.1089/jmf.2014.0091 PMid:25590512 DOI: https://doi.org/10.1089/jmf.2014.0091

de Medeiros LM, De Bastiani MA, Rico EP, Schonhofen P, Pfaffenseller B, Wollenhaupt-Aguiar B, Grun L, Barbé-Tuana F, Zimmer ER, Castro MA, Parsons RB. Cholinergic differentiation of human neuroblastoma SHSY5Y cell line and its potential use as an in vitro model for Alzheimer’s disease studies. Molecular Neurobiology. 2019; 56:7355-67. https://doi.org/10.1007/s12035-019-1605-3 PMid:31037648 DOI: https://doi.org/10.1007/s12035-019-1605-3

Kaja S, Duncan RS, Longoria S, Hilgenberg JD, Payne AJ, Desai NM, Parikh RA, Burroughs SL, Gregg EV, Goad DL, Koulen P. Novel mechanism of increased Ca2+ release following oxidative stress in neuronal cells involves type 2 inositol-1, 4, 5-trisphosphate receptors. Neuroscience. 2011; 175:28191. https://doi.org/10.1016/j.neuroscience.2010.11.010 PMid:21075175 PMCid:PMC3038464 DOI: https://doi.org/10.1016/j.neuroscience.2010.11.010

D’Ezio V, Colasanti M, Persichini T. Amyloid-β 25-35 Induces Neurotoxicity through the Up-Regulation of Astrocytic System Xc−. Antioxidants. 2021; 10(11):1685. https://doi.org/10.3390/antiox10111685 PMid:34829555 PMCid:PMC8615014 DOI: https://doi.org/10.3390/antiox10111685

Tang Z, Motoyoshi K, Honda T, Nakamura H, Murayama T. Amyloid Beta-Peptide 25–35 (Aβ25–35) induces cytotoxicity via multiple mechanisms: Roles of the inhibition of Glucosylceramide Synthase by Aβ25–35 and its protection by D609. Biological and Pharmaceutical Bulletin. 2021; 44(10):1419-26. https://doi.org/10.1248/bpb.b21-00204 PMid:34602551 DOI: https://doi.org/10.1248/bpb.b21-00204

Dhivya PS, Selvamani P, Latha S, Mani V, Azahan NS. In vitro evaluation of Acetylcholinesterase inhibitory and neuroprotective activity in Commiphora species: A comparative study. Pharmacognosy Journal. 2020; 12(6):1223-31. https://doi.org/10.5530/pj.2020.12.171 DOI: https://doi.org/10.5530/pj.2020.12.171

Roeske-Nielsen A, Fredman P, Mansson JE, Bendtzen K, Buschard K. Beta-galactosylceramide increases and sulfatide decreases cytokine and chemokine production in whole blood cells. Immunology letters. 2004; 91(2-3):205-11. https://doi.org/10.1016/j.imlet.2003.12.010 PMid:15019291 DOI: https://doi.org/10.1016/j.imlet.2003.12.010

Kalagatur NK, Abd_Allah EF, Poda S, Kadirvelu K, Hashem A, Mudili V, Siddaiah C. Quercetin mitigates the deoxynivalenol mycotoxin induced apoptosis in SH-SY5Y cells by modulating the oxidative stress mediators. Saudi Journal of Biological Sciences. 2021; 28(1):465-77. https://doi.org/10.1016/j.sjbs.2020.10.030 PMid:33424329 PMCid:PMC7783655 DOI: https://doi.org/10.1016/j.sjbs.2020.10.030

Dilna A, Deepak KV, Damodaran N, Kielkopf CS, Kagedal K, Ollinger K, Nath S. Amyloid-β induced membrane damage instigates tunneling nanotube-like conduits by p21-activated kinase dependent actin remodulation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2021; 1867(12):166246. https://doi.org/10.1016/j.bbadis.2021.166246 PMid:34403739 DOI: https://doi.org/10.1016/j.bbadis.2021.166246

Nampoothiri M, Reddy ND, John J, Kumar N, Kutty Nampurath G, Rao Chamallamudi M. Insulin blocks glutamate-induced neurotoxicity in differentiated SH-SY5Y neuronal cells. Behav Neurol. 2014; 2014:674164. https://doi.org/10.1155/2014/674164 PMid:25018588 PMCid: PMC4082871 DOI: https://doi.org/10.1155/2014/674164

Lin CH, Nicol CJ, Wan C, Chen SJ, Huang RN, Chiang MC. Exposure to PM2. 5 induces neurotoxicity, mitochondrial dysfunction, oxidative stress and inflammation in human SH-SY5Y neuronal cells. Neurotoxicology. 2022; 88:2535. https://doi.org/10.1016/j.neuro.2021.10.009 PMid: 34718062 DOI: https://doi.org/10.1016/j.neuro.2021.10.009

Gong Y, Huang A, Guo X, Jia Z, Chen X, Zhu X, Xia Y, Liu J, Xu Y, Qin X. Selenium-core nanozymes dynamically regulates Aβ and neuroinflammation circulation: Augmenting repair of nervous damage. Chemical Engineering Journal. 2021; 418:129345. https://doi.org/10.1016/j.cej.2021.129345 DOI: https://doi.org/10.1016/j.cej.2021.129345

Tang Y, Zhang D, Zheng J. Repurposing antimicrobial Protegrin-1 as a Dual-Function Amyloid inhibitor via cross-seeding. ACS Chemical Neuroscience. 2023. https:// doi.org/10.1021/acschemneuro.3c00293 PMid:37589476 DOI: https://doi.org/10.1021/acschemneuro.3c00293

Feng P, Li Q, Sun H, Gao J, Ye X, Tao Y, Tian Y, Wang P. Effects of fulvic acid on growth performance, serum index, gut microbiota, and metabolites of Xianju yellow chicken. Frontiers in Nutrition. 2022; 9:963271. https://doi.org/10.3389/fnut.2022.963271 PMid:35990363 PMCid:PMC9389313 DOI: https://doi.org/10.3389/fnut.2022.963271

Jacob KK, Prashob PK, Chandramohanakumar N. Humic substances as a potent biomaterials for therapeutic and drug delivery system — A review. Int. J. Appl. Pharm. 2019; 11:14. https://doi.org/10.22159/ijap.2019v11i3.31421 DOI: https://doi.org/10.22159/ijap.2019v11i3.31421

Neamatallah WA, Sadek KM, El-Sayed YS, Saleh EA, Khafaga AF. 2, 3-Dimethylsuccinic acid and fulvic acid attenuate lead-induced oxidative misbalance in brain tissues of Nile tilapia Oreochromis niloticus. Environmental Science and Pollution Research. 2022. p. 1-4. https://doi.org/10.1007/s11356-021-16359-z PMid:34775563 DOI: https://doi.org/10.1007/s11356-021-16359-z

Zykova MV, Schepetkin IA, Belousov MV, Krivoshchekov SV, Logvinova LA, Bratishko KA, Yusubov MS, Romanenko SV, Quinn MT. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules. 2018; 23(4):753. https://doi.org/10.3390/molecules23040753 PMid:29587351 PMCid: PMC6017172 DOI: https://doi.org/10.3390/molecules23040753

Sugimoto M, Ko R, Goshima H, Koike A, Shibano M, Fujimori K. Formononetin attenuates H2O2-induced cell death through decreasing ROS level by PI3K/Akt-Nrf2-activated antioxidant gene expression and suppressing MAPK-regulated apoptosis in neuronal SH-SY5Y cells. Neurotoxicology. 2021; 85:186-200. https://doi.org/10.1016/j.neuro.2021.05.014 PMid:34077701 DOI: https://doi.org/10.1016/j.neuro.2021.05.014

Petry FD, Coelho BP, Gaelzer MM, Kreutz F, Guma FT, Salbego CG, Trindade VM. Genistein protects against amyloid‐beta‐induced toxicity in SH‐SY5Y cells by regulation of Akt and Tau phosphorylation. Phytotherapy research. 2020; 34(4):796-807. https://doi.org/10.1002/ptr.6560 PMid:31795012 DOI: https://doi.org/10.1002/ptr.6560

Chun Li Y, Cheng Hao J, Shang B, Zhao C, Juan Wang L, Lin Yang K, Zhou He X, Qian Tian Q, Liang Wang Z, Ling Jing H, Li Y. Neuroprotective effects of aucubin on hydrogen peroxide-induced toxicity in human neuroblastoma SHSY5Y cells via the Nrf2/HO-1 pathway. Phytomedicine. 2021; 87:153577. https://doi.org/10.1016/j.phymed.2021.153577 PMid:33994055 DOI: https://doi.org/10.1016/j.phymed.2021.153577

Wang M, Kou J, Wang C, Yu X, Xie X, Pang X. Curcumin inhibits APOE4-induced injury by activating peroxisome proliferator-activated receptor-γ (PPARγ) in SH-SY5Y cells. Iranian Journal of Basic Medical Sciences. 2020; 23(12):1576.

Barangi S, Hosseinzadeh P, Karimi G, Najaran ZT, Mehri S. Osthole attenuated cytotoxicity induced by 6-OHDA in SH-SY5Y cells through inhibition of JAK/STAT and MAPK pathways. Iranian Journal of Basic Medical Sciences. 2023; 26(8):953.

Xu DL, Fan K, Zhang H, Tang LX, Wang Y, Xiang Z, Shi AM, Qu YC, Su CJ, Pan J. Anti-proliferation and apoptosisinducing effects of dihydroartemisinin on SH-SY5Y cells and metabolomic analysis. Translational Pediatrics. 2022; 11(8):1346. https://doi.org/10.21037/tp-22-331 PMid:36072536 PMCid:PMC944220 DOI: https://doi.org/10.21037/tp-22-331