Quercetin Mitigates Diabetic Nephropathy in Rats via Keap1/Nrf2/HO-1 Signaling Pathway
DOI:
https://doi.org/10.18311/jnr/2023/33313Keywords:
Caspase-3, Diabetic Nephropathy, HO-1, Nrf2, NFκB, Oxidative Stress, QuercetinAbstract
A severe diabetic complication, diabetic nephropathy, progresses to terminal kidney disease. A chronic hyperglycemia-related excess of reactive oxygen species results in the advancement of diabetes complications. Through streptozotocin-induced diabetic nephropathy in rats, the present study investigated Quercetin’s renoprotective effect by upregulating nuclear factor-erythroid-related factor 2 (Nrf2) to cope with oxidative stress. During eight weeks study, daily food-water and weekly body weight were evaluated while biochemical, antioxidant parameters and genetic expression (Nrf2, Hemeoxygenease-1, Nuclear factor kappa B, Interlukin-6, and Caspase-3) were assessed at the end. The outcomes were interpreted using ANOVA, and the significance was determined using Dunnett’s test. Quercetin treatment for eight weeks significantly controlled hyperglycemia, dyslipidemia, and downregulated inflammatory activators NFκB, IL-6, and Caspase-3. The significant upregulation of Nrf2 gene expression reduced oxidative damage by promoting Antioxidant response elements and initiating downstream cascade (HO-1 and antioxidant enzymes). The results are supported by histopathology. Experimental evidence suggests that Quercetin can fight metabolic disorders and their related microvascular diseases by activating Nrf2.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ankita Desai, Hital Shah, Anjali Patel, Tejal R. Gandhi (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-05-23
Published 2023-07-03
References
Lin YC, Chang YH, Yang SY, Wu KD, Chu TS. Update of pathophysiology and management of diabetic kidney disease. Journal of the Formosan Medical Association. 2018; 117(8):662-75. https:// doi.org/10.1016/j.jfma.2018.02.007 DOI: https://doi.org/10.1016/j.jfma.2018.02.007
McGrath K, Edi R. Diabetic kidney disease: diagnosis, treatment, and prevention. American Family Physician. 2019; 99(12):751-9.
Zhou K, Zi X, Song J, Zhao Q, Liu J, Bao H, Li L. Molecular mechanistic pathways targeted by naturalcompounds in the prevention and treatment of diabetic kidney disease. Molecules. 2022; 27(19):6221. https://doi.org/10.3390/molecules27196221 DOI: https://doi.org/10.3390/molecules27196221
Debnam ES, Unwin RJ. Hyperglycemia and intestinal and renal glucose transport: implications for diabetic renal injury. Kidney international. 1996; 50(4):1101- 9. https://doi.org/10.1038/ki.1996.416 DOI: https://doi.org/10.1038/ki.1996.416
Fridlyand LE, Philipson LH. Oxidative reactive species in cell injury: mechanisms in diabetes mellitus and therapeutic approaches. Annals of the New York Academy of Sciences. 2006; 1066(1):136-51. https:// doi.org/10.1196/annals.1363.019 DOI: https://doi.org/10.1196/annals.1363.019
Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, Matsumura T, Tokunaga H, Brownlee M, Araki E. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes. 2003; 52(10):2570-7. https://doi.org/10.2337/diabetes.52.10.2570 DOI: https://doi.org/10.2337/diabetes.52.10.2570
Thallas-Bonke V, Thorpe SR, Coughlan MT, Fukami K, Yap FY, Sourris KC, Penfold SA, Bach LA, Cooper ME, Forbes JM. Inhibition of NADPH oxidase prevents advanced glycation end product–mediated damage in diabetic nephropathy through a protein kinase C-α–dependent pathway. Diabetes. 2008; 57(2):460-9. https://doi.org/10.2337/db07-1119 DOI: https://doi.org/10.2337/db07-1119
Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Dual roles of Nrf2 in cancer. Pharmacological Research. 2008; 58(5-6):262-70. https://doi. org/10.1016/j.phrs.2008.09.003 DOI: https://doi.org/10.1016/j.phrs.2008.09.003
Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC. The Nrf2–ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Annals of the New York Academy of Sciences. 2008; 1147(1):61-9. https://doi. org/10.1196/annals.1427.036 DOI: https://doi.org/10.1196/annals.1427.036
Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, Zhang DD. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes. 2010; 59(4):850-60. https://doi.org/10.2337/db09-1342 DOI: https://doi.org/10.2337/db09-1342
Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metabolism Reviews. 2006; 38(4):769-89. https://doi.org/10.1080/ 03602530600971974 DOI: https://doi.org/10.1080/03602530600971974
Xue M, Qian Q, Adaikalakoteswari A, Rabbani N, Babaei-Jadidi R, Thornalley PJ. Activation of NF-E2– related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes. 2008; 57(10):2809-17. https://doi.org/10.2337/db06-1003 DOI: https://doi.org/10.2337/db06-1003
He X, Kan H, Cai L, Ma Q. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. Journal of Molecular and Cellular Cardiology. 2009; 46(1):47-58. https://doi. org/10.1016/j.yjmcc.2008.10.007 DOI: https://doi.org/10.1016/j.yjmcc.2008.10.007
Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D, Zhang DD. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes. 2011; 60(11):3055-66. https:// doi.org/10.2337/db11-0807 DOI: https://doi.org/10.2337/db11-0807
Yoh K, Hirayama A, Ishizaki K, Yamada A, Takeuchi M, Yamagishi SI, Morito N, Nakano T, Ojima M, Shimohata H, Itoh K. Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2‐deficient mice. Genes to Cells. 2008; 13(11):1159-70. https://doi. org/10.1111/j.1365-2443.2008.01234.x DOI: https://doi.org/10.1111/j.1365-2443.2008.01234.x
Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clinical Science. 2013; 124(3):139-52. https://doi.org/10.1042/CS20120198 17. Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemiamediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2011; 1812(7):719-31. https://doi.org/10.1016/j. bbadis.2011.03.008 DOI: https://doi.org/10.1016/j.bbadis.2011.03.008
Li H, Zhang L, Wang F, Shi Y, Ren Y, Liu Q, Cao Y, Duan H. Attenuation of glomerular injury in diabetic mice with tert-butylhydroquinone through nuclear factor erythroid 2-related factor 2-dependent antioxidant gene activation. American Journal of Nephrology. 2011; 33(4):289-97. https://doi. org/10.1159/000324694 DOI: https://doi.org/10.1159/000324694
Song MY, Kim EK, Moon WS, Park JW, Kim HJ, So HS, Park R, Kwon KB, Park BH. Sulforaphane protects against cytokine-and streptozotocininduced β-cell damage by suppressing the NF-κB pathway. Toxicology and Applied Pharmacology. 2009; 235(1):57-67. https://doi.org/10.1016/j. taap.2008.11.007 DOI: https://doi.org/10.1016/j.taap.2008.11.007
Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against oxidative stress in chronic kidney disease: Promising small molecule natural products targeting nrf2-ho-1 signaling. Antioxidants. 2021; 10(2):258. https://doi.org/10.3390/ antiox10020258 DOI: https://doi.org/10.3390/antiox10020258
Li B, Liu S, Miao L, Cai L. Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy. Experimental Diabetes Research. 2012; 2012. https://doi. org/10.1155/2012/216512 DOI: https://doi.org/10.1155/2012/216512
Ooi BK, Chan KG, Goh BH, Yap WH. The role of natural products in targeting cardiovascular diseases via Nrf2 pathway: novel molecular mechanisms and therapeutic approaches. Frontiers in Pharmacology. 2018; 9:1308. https://doi.org/10.3389/ fphar.2018.01308 DOI: https://doi.org/10.3389/fphar.2018.01308
Deepika, Maurya PK. Health benefits of quercetin in age-related diseases. Molecules. 2022; 27(8):2498. https://doi.org/10.3390/molecules27082498 DOI: https://doi.org/10.3390/molecules27082498
Jamali N, Zal F, Mostafavi-Pour Z, Samare-Najaf M, Poordast T, Dehghanian A. Ameliorative effects of quercetin and metformin and their combination against experimental endometriosis in rats. Reproductive Sciences. 2021; 28:683-92. https://doi. org/10.1007/s43032-020-00377-2 DOI: https://doi.org/10.1007/s43032-020-00377-2
Shen P, Lin W, Deng X, Ba X, Han L, Chen Z, Qin K, Huang Y, Tu S. Potential implications of quercetin in autoimmune diseases. Frontiers in Immunology. 2021; 1991. https://doi.org/10.3389/fimmu.2021.689044 DOI: https://doi.org/10.3389/fimmu.2021.689044
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. European Journal of Medicinal Chemistry. 2018; 155:889-904. https://doi. org/10.1016/j.ejmech.2018.06.053 DOI: https://doi.org/10.1016/j.ejmech.2018.06.053
Panchal SK, Poudyal H, Brown L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. The Journal of Nutrition. 2012; 142(6):1026-32. https://doi.org/10.3945/jn.111.157263 DOI: https://doi.org/10.3945/jn.111.157263
Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine and Pharmacotherapy. 2020; 121:109604. https://doi. org/10.1016/j.biopha.2019.109604 DOI: https://doi.org/10.1016/j.biopha.2019.109604
Fortunato LR, Alves CD, Teixeira MM, Rogerio AP. Quercetin: a flavonoid with the potential to treat asthma. Brazilian Journal of Pharmaceutical Sciences. 2012; 48:589-99. https://doi.org/10.1590/ S1984-82502012000400002 DOI: https://doi.org/10.1590/S1984-82502012000400002
Kobori M, Masumoto S, Akimoto Y, Oike H. Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western‐style diet in C57/BL6J mice. Molecular Nutrition and Food Research. 2011; 55(4):530-40. https://doi.org/10.1002/mnfr.201000392 DOI: https://doi.org/10.1002/mnfr.201000392
Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. 2003; 135(3):357-64. https://doi.org/10.1016/S1532-0456(03)00140-6 DOI: https://doi.org/10.1016/S1532-0456(03)00140-6
Oyedemi SO, Nwaogu G, Chukwuma CI, Adeyemi OT, Matsabisa MG, Swain SS, Aiyegoro OA. Quercetin modulates hyperglycemia by improving the pancreatic antioxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: In silico studies of molecular interaction of quercetin with hexokinase and catalase. Journal of Food Biochemistry. 2020; 44(2):e13127. https://doi.org/10.1111/jfbc.13127 DOI: https://doi.org/10.1111/jfbc.13127
Wang C, Pan Y, Zhang QY, Wang FM, Kong LD. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PloS one. 2012; 7(6):e38285. https://doi.org/10.1371/ journal.pone.0038285 DOI: https://doi.org/10.1371/journal.pone.0038285
Jia H, Zhang Y, Si X, Jin Y, Jiang D, Dai Z, Wu Z. Quercetin alleviates oxidative damage by activating nuclear factor erythroid 2-related factor 2 signaling in porcine enterocytes. Nutrients. 2021; 13(2):375. https://doi.org/10.3390/nu13020375 DOI: https://doi.org/10.3390/nu13020375
Sanjay S, Girish C, Toi PC, Bobby Z. Quercetin modulates NRF2 and NF-κB/TLR-4 pathways to protect against isoniazid-and rifampicin-induced hepatotoxicity in vivo. Canadian Journal of Physiology and Pharmacology. 2021; 99(9):952-63. https://doi. org/10.1139/cjpp-2021-0008 DOI: https://doi.org/10.1139/cjpp-2021-0008
Schadich E, Hlaváč J, Volná T, Varanasi L, Hajdúch M, Džubák P. Effects of ginger phenylpropanoids and quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT keratinocytes. BioMed Research International. 2016; 2016. https://doi. org/10.1155/2016/2173275 DOI: https://doi.org/10.1155/2016/2173275
Das J, Mazumder PM. Quercetin as a modulator of diabetic macrovascular complications in murine and chick embryo models. Indian Journal of Pharmaceutical Education and Research. 2018; 52(4):594-601. 10.5530/ijper.52.4.69 DOI: https://doi.org/10.5530/ijper.52.4.69
Sharma G, Ashhar MU, Aeri V, Katare DP. Development and characterization of latestage diabetes mellitus and-associated vascular complications. Life Sciences. 2019; 216:295-304. https://doi.org/10.1016/j.lfs.2018.11.005 DOI: https://doi.org/10.1016/j.lfs.2018.11.005
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry. 1972; 18(6):499- 502. https://doi.org/10.1093/clinchem/18.6.499 DOI: https://doi.org/10.1093/clinchem/18.6.499
Jiang N, Zhang Y. Antidiabetic effects of nerolidol through promoting insulin receptor signaling inhigh-fat diet and low dose streptozotocin-induced type 2 diabetic rats. Human and Experimental Toxicology. 2022; 41:09603271221126487. https:// doi.org/10.1177/09603271221126487 DOI: https://doi.org/10.1177/09603271221126487
Oza MJ, Kulkarni YA. Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia. Frontiers in Pharmacology. 2018; 9:739. https://doi.org/10.3389/fphar.2018.00739 DOI: https://doi.org/10.3389/fphar.2018.00739
Jiang X, Yu J, Wang X, Ge J, Li N. Quercetin improves lipid metabolism via SCAP-SREBP2-LDLr signaling pathway in early stage diabetic nephropathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2019; 827-39. https://doi.org/10.2147/ DMSO.S195456 DOI: https://doi.org/10.2147/DMSO.S195456
Jo SH, Ka E-H, Lee H-S, Apostolidis E, Jang HD, Kwon Y. Comparison of Antioxidant Potential and Rat intestinal a-Glucosidases inhibitory Activities of Quercetin, Rutin, and Isoquercetin. International Journal of Applied Research in Natural Products. 2009; 2:52-60
Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, De Heer E, Joh K. Pathologic classification of diabetic nephropathy. Journal of the American Society of Nephrology. 2010; 21(4):556-63. 10.1681/ ASN.2010010010 DOI: https://doi.org/10.1681/ASN.2010010010
Lai PB, Zhang L, Yang LY. Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-β1 and connective tissue growth factor in streptozotocin-induced diabetic rats. Renal Failure. 2012; 34(1):83-7. https://doi.org/10.31 09/0886022X.2011.623564 DOI: https://doi.org/10.3109/0886022X.2011.623564
Pan HZ, Zhang L, Guo MY, Sui H, Li H, Wu WH, Qu NQ, Liang MH, Chang D. The oxidative stress status in diabetes mellitus and diabetic nephropathy. Acta Diabetologica. 2010; 47:71-6. https://doi.org/10.1007/ s00592-009-0128-1 DOI: https://doi.org/10.1007/s00592-009-0128-1
Ahad A, Mujeeb M, Ahsan H, Siddiqui WA. Nephroprotective potential of Quercus infectoria galls against experimentally induced diabetic nephropathy in rats through inhibition of renal oxidative stress and TGF-β. Animal Cells and Systems. 2016; 20(4):193- 202. https://doi.org/10.1080/19768354.2016.1207703 DOI: https://doi.org/10.1080/19768354.2016.1207703
Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y, Shen J, Chen CT, Huo L, Hsu MC, Li CW. KEAP1 E3 ligase-mediated downregulation of NF-κB signaling by targeting IKKβ. Molecular Cell. 2009; 36(1):131- 40. https://doi.org/10.1016/j.molcel.2009.07.025 DOI: https://doi.org/10.1016/j.molcel.2009.07.025