Influence of Nutrients in Microalgae Cultivation by SEM and EDX Evaluation

Jump To References Section

Authors

  • Department of Microbiology, Parul University, Ahmedabad – 380058, Gujarat ,IN
  • Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University (DSIR-SIRO Recognized), PO Limda, Tal Waghodia, Vadodara – 391760, Gujarat ,IN
  • Faculty of Life health and Allied Science, ITM Vocational University, Vadodara – 391760, Gujarat ,IN

DOI:

https://doi.org/10.18311/jnr/2023/33354

Keywords:

Energy-dispersive X-ray Spectroscopy, Microalgae, Nutrients, Scanning Electron Microscopy

Abstract

Microalgae have recently attracted a lot of attention on a global level because of their numerous application possibilities in the renewable energy, biopharmaceutical, and nutraceutical industries. Microalgae can be exploited to make biofuels, bioactive medicines and food additives at a low cost and with no environmental harmful impact. The media’s nutritional content affects the development of microalgae. The role that macro- and micro-nutrients play in the cultivation of microalgae is also significant. For microalgae cultivation, a sample of river water was collected, BG11 and Bold Basal Media (BBM) synthetic media were prepared. Observations of microalgae growth were made after 15 days. On samples of raw water and microalgae grown in a lab, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray spectroscopy (EDX) were conducted. Raw water and microalgae sample structures were detailed by SEM results, and both samples’ chemical compositions were shown by EDX results. The cultivation of microalgae depends heavily on macro and micro nutrients. The growth of microalgae was accelerated in the presence of nutrients.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-31

How to Cite

Pandya, K., Upadhye, V. J., & Shrivastav, A. (2023). Influence of Nutrients in Microalgae Cultivation by SEM and EDX Evaluation. Journal of Natural Remedies, 23(3), 1135–1140. https://doi.org/10.18311/jnr/2023/33354

Issue

Section

Short Communication
Received 2023-03-23
Accepted 2023-06-28
Published 2023-08-31

 

References

Zhu L, Hiltunen E. Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International. 2016. https://doi.org/10.1155/ 2016/8792548 DOI: https://doi.org/10.1155/2016/8792548

Chen Z, Wang L. Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International. 2018. https://doi.org/10.1155/2018/1503126 DOI: https://doi.org/10.1155/2018/1503126

Franciele C, Angela M. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Mar Drugs. 2019; 17(6):312. https://doi.org/10.3390/md17060312 DOI: https://doi.org/10.3390/md17060312

Grequede MM, SilvaVaz B. Biologically active metabolites synthesized by microalgae. Biomed Res Int. 2015. https:// doi.org/10.1155/2015/835761 DOI: https://doi.org/10.1155/2015/835761

Singh J, Saxena R. An introduction to microalgae: diversity and significance. Handbook of Marine Microalgae. 2015; 2:11-24. https://doi.org/10.1016/B978-0-12-800776- 1.00002-9 DOI: https://doi.org/10.1016/B978-0-12-800776-1.00002-9

Barsanti L, Coltelli P, Evangelista V, Frassanito AM, Passarelli V, et al. Algal toxins: Nature, occurrence, effect and detection; 2008. p. 353-91. https://doi.org/10.1007/978- 1-4020-8480-5_17 DOI: https://doi.org/10.1007/978-1-4020-8480-5_17

Das P, Aziz SS, Obbard JP. Two phase microalgae growth in the open system for enhanced lipid productivity. Renew Energ. 2001; 36(9):2524-8. https://doi.org/10.1016/j.renene. 2011.02.002 DOI: https://doi.org/10.1016/j.renene.2011.02.002

Plaza M, Herrero M, Cifuentes A, Ibanez E. Innovative natural functional ingredients from microalgae. J of Argic Food Chem. 2009; 57:7159-70. https://doi.org/10.1021/ jf901070g DOI: https://doi.org/10.1021/jf901070g

Song M, Pei H, Hu W, Ma G. Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresource Technol. 2013; 141:245-51. https://doi.org/ 10.1016/j.biortech.2013.02.024 DOI: https://doi.org/10.1016/j.biortech.2013.02.024

Michelon W, Silva D, Mezzari MLB, Pirolli MP, Prandini J. Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Applied Biochem Biotechnol. 2016; 178:1407-19. https://doi. org/10.1007/s12010-015-1955-x DOI: https://doi.org/10.1007/s12010-015-1955-x

Jazzar S, Berrejeb N, Messaoud C, Marzouki MN, Smaali I. Growth parameters, photosynthetic performance, and biochemical characterization of newly isolated green microalgae in response to culture condition variations. Applied Biochem Biotechnol. 2016; 179:1290-308. https:// doi.org/10.1007/s12010-016-2066-z DOI: https://doi.org/10.1007/s12010-016-2066-z

Chen M, Tang H, Ma H, Holland TC, Ng KS, et al. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliellatertiolecta. Bioresource Technol. 2011; 102:1649-55. https://doi.org/10.1016/j.biortech.2010.09.062 DOI: https://doi.org/10.1016/j.biortech.2010.09.062

Rehman Z, Anal A. Enhanced lipid and starch productivity of microalga (Chlorococcum sp. TISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnol Rep. 2019; 21. https://doi. org/10.1016/j.btre.2018.e00298 DOI: https://doi.org/10.1016/j.btre.2018.e00298

Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcusbraunii KMITL 2. Bioresource Technol. 2019; 109:261-5. https://doi. org/10.1016/j.biortech.2011.07.025 DOI: https://doi.org/10.1016/j.biortech.2011.07.025

Wang S, Zheng L, Han X, Yang B, Li J, Sun C. Lipid accumulation and CO2 utilization of two marine oilrich microalgal strains in response to CO2 aeration. Acta Oceanol Sin. 2018; 37(2):119-26. https://doi.org/10.1007/ s13131-018-1171-y DOI: https://doi.org/10.1007/s13131-018-1171-y

Singh SK, Sundaram S, Sinha S, Rahman MA, Kapur S. Recent advances in CO2 uptake and fixation mechanism of Cyanobacteria and microalgae. Critical Reviews in Environmental Science and Technology. 2016; 46(16):1297- 323. https://doi.org/10.1080/10643389.2016.1217911 DOI: https://doi.org/10.1080/10643389.2016.1217911

Mondal M, Khanra S, Tiwari ON, Gayen K, Halder GN. Role of carbonic anhydrase on the way to biological carbon capture through microalgae - A mini review. Environ Prog Sustain Energy. 2016; 35(6):1605-15. https://doi. org/10.1002/ep.12394 DOI: https://doi.org/10.1002/ep.12394

Brian A, Malcolm P. Introduction to Cyanobacteria. Ecology of Cyanobacteria II. 2012; 1:13. https://doi. org/10.1007/978-94-007-3855-3_1 DOI: https://doi.org/10.1007/978-94-007-3855-3_1

Cembella A, Antia N, Harrison P. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. Crit Rev Microbiol. 1982; 10(4):317-91. https://doi. org/10.3109/10408418209113567 DOI: https://doi.org/10.3109/10408418209113567

Huang B, Hong H. Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters. Mar Pollut Bull. 1999; 39(112):205-11. https://doi.org/10.1016/S0025- 326X(99)00006-5 DOI: https://doi.org/10.1016/S0025-326X(99)00006-5

Dyhrman S, Ruttenberg K. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol Oceanogr Bull. 2006; 51(3):1381-90. https://doi.org/10.4319/lo.2006.51.3.1381 DOI: https://doi.org/10.4319/lo.2006.51.3.1381

Kuenzler E, Perras J. Phosphatases of marine algae. Biol Bull. 1965; 128(2):271-84. https://doi.org/10.2307/1539555 23. Turpin D. Effects of inorganic N availability on algal photosynthesis and carbonmetabolism. J Phycol. 1991; 27(1):14-20. https://doi.org/10.1111/j.0022-3646.1991. 00014.x

Grobbelaar J, Richmond A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Publishing Ltd. Oxford; 2004. p. 97-115. DOI: https://doi.org/10.1002/9780470995280

Melis A, Chen H. Chloroplast sulfate transport in green algae are genes, proteins and effects. Photosyn Res. 2005; 86(3):299-307. https://doi.org/10.1007/s11120-005-7382-z DOI: https://doi.org/10.1007/s11120-005-7382-z

Weiss M, Haimovich G, Pick U. Phosphate and sulfate uptake in the halotolerant alga Dunaliella are driven by Naþ-symport mechanism. J Plant Physiol. 2001; 158(12):1519-25. https://doi.org/10.1078/0176-1617-00584 DOI: https://doi.org/10.1078/0176-1617-00584

Tokus M. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisisgalbana. J Food Sci. 2003; 68(4):1144-8. https:// doi.org/10.1111/j.1365-2621.2003.tb09615.x DOI: https://doi.org/10.1111/j.1365-2621.2003.tb09615.x

Hoffmann J. Wastewater treatment with suspended and non-suspended algae. J Phycol. 1998; 34(5):757-63. https:// doi.org/10.1046/j.1529-8817.1998.340757.x DOI: https://doi.org/10.1046/j.1529-8817.1998.340757.x

Kylin A, Das G. Calcium and strontium as micronutrients and morphogenetic factors for Scenedesmus. Phycologia. 1967; 6(4):201-10. https://doi.org/10.2216/i0031-8884-6-4- 201.1 DOI: https://doi.org/10.2216/i0031-8884-6-4-201.1

Kay R, Barton L. Microalgae as food and supplement. Crit Rev Food Sci Nutr. 1991; 30(6):555-73. https://doi. org/10.1080/10408399109527556 DOI: https://doi.org/10.1080/10408399109527556

Giorgos M, Dries V. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014; 65:186-202. https://doi.org/10.1016/j.watres.2014.07.025 DOI: https://doi.org/10.1016/j.watres.2014.07.025