Development and Greenness Assessment of Analytical Quality by Design Optimised Eco-friendly UV Spectrophotometric Methods for Analysis of Two Natural Antioxidants in Pure and Formulation
DOI:
https://doi.org/10.18311/jnr/2023/33662Keywords:
Analytical Eco-scale, Analytical Greenness Metrics, Analytical Quality by Design, Curcumin, Green Analytical Procedure Index, SilybinAbstract
Utilizing analytical quality by design and green analytical chemistry principles, the present work introduces simple, robust, and environmentally benign UV methods. Two separate spectrophotometric methods were developed for the estimation of Silybin and Curcumin, where solvent, scan speed, and sampling interval are the estimated critical parameters. The detection was carried out at absorption maxima of 288nm for Silybin and 419nm for Curcumin with ethanol. To determine the critical method variables, a risk assessment was carried out using an Ishikawa diagram. Developed spectrophotometric methods were validated according to the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use Q2 (R1) guidelines. The proposed methods showed good predictability and robustness. The new methodologies were found to be green according to the analytical greenness metric approach and software, the green analytical procedure index, and analytical eco-scale tools in comparison to the existing methods.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ramya Jonnalagadda, Seetharaman Rathinam, Vinodhini Chandrasekar (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-07-24
Published 2023-11-08
References
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010; 4(8):118-26. https://doi.org/10.4103/0973-7847.70902 PMid:22228951 PMCid: PMC3249911 DOI: https://doi.org/10.4103/0973-7847.70902
Atta EM, Mohamed NH, Abdelgawad AAM. Antioxidants: An overview of the natural and synthetic types. Eur. Chem. Bull. 2017; 6(8):365-75. https://doi.org/10.17628/ecb.2017.6.365-375 DOI: https://doi.org/10.17628/ecb.2017.6.365-375
Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N. Potential applications of antioxidants - A review. J. Pharm. Res. 2013; 7(9):828–35. https://doi.org/10.1016/j.jopr.2013.10.001 DOI: https://doi.org/10.1016/j.jopr.2013.10.001
Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol. 2001; 54(3):176–86. https://doi.org/10.1136/jcp.54.3.176 PMid:11253127 PMCid: PMC1731363 DOI: https://doi.org/10.1136/jcp.54.3.176
Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal A. Impact of antioxidant supplementation on chemotherapeutic toxicity: A systematic review of the evidence from randomized controlled trials. Int. J. Cancer. 2008; 123:1227–39. https://doi.org/10.1002/ijc.23754 PMid:18623084 DOI: https://doi.org/10.1002/ijc.23754
Athreya K, Xavier MF. Antioxidants in the treatment of cancer. Nutr Cancer. 2017; 69(8):1-6. https://doi.org/10.1080/01635581.2017.1362445 PMid:29043851 DOI: https://doi.org/10.1080/01635581.2017.1362445
Indian Pharmacopoeia. 8th ed. Volume 3, Ghaziabad: Indian Pharmacopoeial Commission, Ministry of Health and Family Welfare, Govt. of India, 2018; p. 3832-33.
Csupor D, Csorba A, Hohmann J. Recent advances in the analysis of flavonolignans of Silybum marianum. J Pharm Biomed Anal. 2016; 130:301-17. https://doi.org/10.1016/j.jpba.2016.05.034 PMid:27321822 DOI: https://doi.org/10.1016/j.jpba.2016.05.034
Ramya J, Vinodhini C. Silymarin and oral cancer: a review on clinical and analytical reports. Thai Journal of Pharmaceutical Sciences. 2022; 46(4):361-72.
Ahmad U, Faiyazuddin, Md, Hussain Md T, Ahmad S, Alshammari, TM, Shakeel F. Silymarin: an insight to its formulation and analytical prospects. Acta Physiol Plant. 2015; 37:1-17. https://doi.org/10.1007/s11738-015-2008-3 DOI: https://doi.org/10.1007/s11738-015-2008-3
Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients. 2018; 10(10):1553. https://doi.org/10.3390/nu10101553 PMid:30347782 PMCid: PMC6213156 DOI: https://doi.org/10.3390/nu10101553
Indian Pharmacopoeia. 8th ed. Volume 3, Ghaziabad: Indian Pharmacopoeial Commission, Ministry of Health and Family Welfare, Govt. of India; 2018; 3799-3800.
Shiyou, Li, Yuan W, Deng G, Wang P, Yang P, Agarwal BB. Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharmaceutical Crops. 2011; 2:28-54. https://doi.org/10.2174/2210290601102010028 DOI: https://doi.org/10.2174/2210290601102010028
Kotha RR, Luthria DL. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019; 24(16):2930. https://doi.org/10.3390/molecules24162930 PMid:31412624 PMCid:PMC6720683 DOI: https://doi.org/10.3390/molecules24162930
Ashwinder S, Vasudeva Rao A. Development and validation of UV-spectrophotometric method for the estimation of curcumin in standardised polyherbal formulations. J Young Pharm. 2017; 9(4):491-5. https://doi.org/10.5530/jyp.2017.9.96 DOI: https://doi.org/10.5530/jyp.2017.9.96
Kotra VSR, Satyabanta L, Goswami TK. A critical review of analytical methods for determination of curcuminoids in turmeric. J Food Sci Technol. 2019; 56(12):5153-66. https://doi.org/10.1007/s13197-019-03986-1 PMid:31749463 PMCid: PMC6838282 DOI: https://doi.org/10.1007/s13197-019-03986-1
ICH harmonised tripartite guidelines. Pharmaceutical Development Q8(R2) [Internet]. 2009. Available from: https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf
Ramalingam P, Jahnavi B. Pharmaceutical quality by design, QbD considerations for analytical development. 2019. https://doi.org/10.1016/B978-0-12-815799-2.00005-8 PMid:30771172 DOI: https://doi.org/10.1016/B978-0-12-815799-2.00005-8
Gałuszka A, Migaszewski Z, Namiesnik J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC Trends Anal Chem. 2013; 50:78-84. https://doi.org/10.1016/j.trac.2013.04.010 DOI: https://doi.org/10.1016/j.trac.2013.04.010
Mohamed HM. Green, environment-friendly, analytical tools give insights into pharmaceutical and cosmetics analysis. TrAC Trends Anal Chem. 2015; 66:176-92. https://doi.org/10.1016/j.trac.2014.11.010 DOI: https://doi.org/10.1016/j.trac.2014.11.010
Yabre M, Ferey L, Some IT, Gaudin K. Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules. 2018; 23(5):1065. https://doi.org/10.3390/molecules23051065 PMid:29724076 PMCid:PMC6100308 DOI: https://doi.org/10.3390/molecules23051065
Rajasekharan A, Kumar M, Krishnamoorthy G, Jayakar B. Spectrophotometric determination of silymarin. Indian J. Pharm. Sci. 1997; 59(5):230-1.
Majumder KK, Sharma JB, Kumar M, Bhatt S, Saini V. Development and validation of UV-Visible spectrophotometric method for the estimation of curcumin in bulk and pharmaceutical formulation. Pharmacophore. 2020; 10(1):115-21.
Snehal JP, Vijay RS. Simultaneous estimation of curcumin and quercetin in ayurvedic proprietary medicine by UV spectrophotometry. IJRAP. 2012; 3(2):267-71.
Sharma JB, Bhatt S, Saini V, Gautam RK, Kumar M. UV-Visible spectrophotometric method development and validation for the estimation of curcumin and tetrahydrocurcumin. Res. J. Pharm. Technol. 2022; 15(2):650-4. https://doi.org/10.52711/0974-360X.2022.00107 DOI: https://doi.org/10.52711/0974-360X.2022.00107
Panda SS, Rath J, Bera VVRK. QbD-driven development and validation of UV spectrophotometric method for estimation of paliperidone in extended-release tablet dosage form. Anal. Chem. Lett. 2018; 8(4):510-8. https://doi.org/10.1080/22297928.2018.1446845 DOI: https://doi.org/10.1080/22297928.2018.1446845
ICH harmonized tripartite guidelines. [Internet]. 2005. Validation of analytical procedures: text and methodology Q2 (R1), Geneva. Available from: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf
Galuszka A, Konieczka P, Migaszewski ZM, Namiesnik J. Analytical eco-scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem. 2012; 37:61-72. https://doi.org/10.1016/j.trac.2012.03.013 DOI: https://doi.org/10.1016/j.trac.2012.03.013
Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE—Analytical GREEnness metric approach and software. Ana. Chem. 2020; 92:10076-82. https://doi.org/10.1021/acs. analchem.0c01887 PMid:32538619 PMCid:PMC7588019 DOI: https://doi.org/10.1021/acs.analchem.0c01887
Plotka-Wasylka J. A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta. 2018; 181:204-9. https://doi.org/10.1016/j.talanta.2018.01.013 PMid:29426502 DOI: https://doi.org/10.1016/j.talanta.2018.01.013
Gul S, Khanum K, Mujtaba N. New validated method for analysis of silymarin in polyherbal formulation (aqueous extract, oral liquid and solid dosage form). Chemistry International. 2015; 1(3):103-6.
Firke SD, Patel N, Surana SJ, Bari SB. Method development and validation of silymarin in bulk and pharmaceutical formulation by UV-spectrophotometric Area Under Curve method (AUC). ACAIJ. 2015; 15(3):100-4.
Moin AM, Patel CN, Dave, JB, Badmanaban, R, Patel JA. Validated method for silymarin by spectrophotometry in bulk drug and pharmaceutical formulations. J. Chem. Pharm. Res. 2010; 2(1):396-400.
Sathish T, Babu UK, Kumar KK, Pratap N, Prasad MK. New spectrophotometric methods for the estimation of silymarin in pure and pharmaceutical dosage forms. Biosci Biotechnol Res Asia. 2005; 3(1):89-93.
Rahman N, Khan NA, Azmi SN. Kinetic spectrophotometric method for the determination of silymarin in pharmaceutical formulations using potassium permanganate as oxidant. Pharmazie. 2004; 59(2):112–6. https://doi.org/10.1016/j.farmac.2004.02.008 PMid:15231428 DOI: https://doi.org/10.1016/j.farmac.2004.02.008
Reddy MN, Reddy YPN, Reddy PJ, Murthy TK. Spectrophotometric determination of silymarin. Asian J. Chem. 2001; 13(3):1234-6.
Rapalli VK, Kaul V, Gorantla S, Waghule T, Dubey SK, Pandey MM, Singhvi G. UV spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in-vitro and ex-vivo applications in topical delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2020; 224:117392. https://doi.org/10.1016/j.saa.2019.117392 PMid:31330421 DOI: https://doi.org/10.1016/j.saa.2019.117392
Sharma S, Sharma JB, Bhatt S, Kumar M. Method development and validation of UV spectrophotometric method for the quantitative estimation of curcumin in simulated nasal fluid. Drug Res (Stuttg). 2020; 70(8):356-9. https://doi.org/10.1055/a-1193-4655 PMid:32575135 DOI: https://doi.org/10.1055/a-1193-4655
Kadam PV, Yadav KN, Bhingare CL, Patil MJ. Standardization and quantification of curcumin from Curcuma longa extract using UV visible spectroscopy and HPLC. J. pharmacogn. phytochem. 2018; 7(5):1913-8.
Pooja SW, Vipul PP, Seema AG. Development and validation of UV spectrophotometric method for the estimation of curcumin in an ayurvedic formulation haridrakhand. Int J. Pharm. Drug. Anal. 2017; 5(5):193-7.
Savale SK. UV spectrophotometric method development and validation for quantitative estimation of curcumin. AJBR. 2017; 3(4):14-8.
Hazra K, Kumar R, Sarkar BK, Chowdary YA, Devgan M, Ramaiah R. UV-Visible spectrophotometric estimation of curcumin in nanoformulation. IJP. 2015; 2(3):127-30. https://doi:10.13040/IJPSR.0975-8232.IJP 2(3).127-30
Sharma K, Agarwal SS, Gupta M. Development and validation of UV spectrophotometric method for the estimation of curcumin in bulk drug and pharmaceutical dosage form. Int. J. Drug Dev. and Res. 2012; 4(2):375-80.