Role of Lifestyle Changes and Natural Herbs in the Management of Hepatic Health
DOI:
https://doi.org/10.18311/jnr/2023/34070Keywords:
Hepatic Health, Intermittent Fasting, Lifestyle Changes, Multiorgan Failure, Natural ProductsAbstract
Liver ailments are significant contributors to human illness and death globally. The prevalence of liver disorders is increasing owing to the widespread prevalence of hepatitis and alcohol addiction. These conditions can be triggered by infection, trauma, exposure to pharmaceuticals or hazardous substances, autoimmune disorders, or genetic abnormalities resulting in the accumulation of harmful substances. Despite advances in understanding the causes underlying hepatic dysfunction, no standard pharmaceutical therapy is available. The only currently advised option is to make lifestyle changes such as diet, intermittent fasting, and increased physical exercise. However, a lack of compliance continues to impede this strategy. As a result, there is an apparent need to characterize novel therapeutic alternatives. Current advances in the communication between the gut and hepatic tissue open new avenues for better explaining the molecular mechanisms behind the pathology of hepatic illness. Natural bioactive compound research has emerged as an appealing strategy for overcoming lifestyle change resistance. The current study aims to review some of the identified compounds and other herbal approaches with favourable characteristics to hepatic health. This review study discusses their protective properties, mode of action in ameliorating the major pathological events involved in liver disorders, and therapeutic applications.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Archna Singh, Avijit Mazumder, Saumya Das, Anmol Kanda (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-07-14
Published 2023-08-31
References
Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R. Targeting the gut-liver axis in liver disease. J Hepatol. 2018; 68(6):1336. https://doi.org/10.1016/j. jhep.2018.03.001 PMid:29655855 DOI: https://doi.org/10.1016/j.jhep.2018.03.001
Pimpin L, Cortez-Pinto H, Negro F, Corbould E, Lazarus JV, Webber L, et al. The burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol. 2018; 69(3):718-35. https://doi.org/10.1016/j.jhep.2018. 05.011 PMid:29777749 DOI: https://doi.org/10.1016/j.jhep.2018.05.011
Gwaltney-Brant SM. Nutraceuticals in hepatic diseases. In Nutraceuticals. 2021; 117-29. Academic Press. https://doi.org/10.1016/B978-0-12-821038- 3.00008-2
Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, et al. Role of natural phenolics in hepatoprotection: a mechanistic review and analysis of the regulatory network of associated genes. Front Pharmacol. 2019; 10:509. https://doi.org/10.3389/fphar.2019.00509 PMid:31178720 PMCid:PMC6543890 DOI: https://doi.org/10.3389/fphar.2019.00509
González-Ponce HA, Rincón-Sánchez AR, Jaramillo- Juárez F, Moshage H. Natural dietary pigments: potential mediators against hepatic damage induced by over-the-counter non-steroidal anti-inflammatory and analgesic drugs. Nutrients. 2018; 10(2):E117. https://doi.org/10.3390/nu10020117 PMid:29364842 PMCid:PMC5852693 DOI: https://doi.org/10.3390/nu10020117
Stander MA, Van Wyk BE, Taylor MJC, Long HS. Analysis of phenolic compounds in rooibos tea (Aspalathus linearis) with a comparison of flavonoidbased compounds in natural populations of plants from different regions. J Agric Food Chem. 2017; 65(47):10270-81. https://doi.org/10.1021/acs.jafc. 7b03942 PMid:29063755 DOI: https://doi.org/10.1021/acs.jafc.7b03942
Smith T. Elucidation of molecular mechanisms that may contribute to polyphenol-induced effects on neutrophil chemokinesis. Stellenbosch: Stellenbosch University; 2017.
Karousatos CM, Lee JK, Braxton DR, Fong TL. Case series and review of Ayurvedic medicationinduced liver injury. BMC Complement Med Ther. 2021; 21(1):91. https://doi.org/10.1186/s12906-021- 03251-z PMid:33714265 PMCid:PMC7956115 DOI: https://doi.org/10.1186/s12906-021-03251-z
Kulkarni AV, Hanchanale P, Prakash V, Kalal C, Sharma M, Kumar K, et al. Tinospora cordifolia (Giloy)-Induced liver injury during the COVID- 19 pandemic-multicenter nationwide study from India. Hepatol Commun. 2022; 6(6):1289-300. https://doi.org/10.1002/hep4.1904 PMid:35037744 PMCid:PMC9134809 DOI: https://doi.org/10.1002/hep4.1904
Björnsson ES, Navarro VJ, Chalasani N. Liver injury following Tinospora cordifolia consumption: druginduced AIH, or de novo AIH? J Clin Exp Hepatol. 2022; 12(1):6-9. https://doi.org/10.1016/j.jceh.2021.11.014 PMid:35068778 PMCid:PMC8766689 DOI: https://doi.org/10.1016/j.jceh.2021.11.014
Liu X, Wang H, Liang X, Roberts MS. Hepatic metabolism in liver health and disease. Inliver pathophysiology. 2017; 391-400. Academic Press. https://doi.org/10.1016/B978-0-12-804274-8. 00030-8 DOI: https://doi.org/10.1016/B978-0-12-804274-8.00030-8
Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections, and risk factors. Nat Rev Gastroenterol Hepatol. 2023; 20(1):37- 49. https://doi.org/10.1038/s41575-022-00688-6 PMid:36258033 PMCid:PMC9579565 DOI: https://doi.org/10.1038/s41575-022-00688-6
Møller S, Bendtsen F. Cirrhotic multiorgan syndrome. Dig Dis Sci. 2015; 60(11):3209-25. https://doi. org/10.1007/s10620-015-3752-3 PMid:26112989 DOI: https://doi.org/10.1007/s10620-015-3752-3
Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008; 134(6):1655-69. https://doi. org/10.1053/j.gastro.2008.03.003 PMid:18471545 PMCid:PMC2888539 DOI: https://doi.org/10.1053/j.gastro.2008.03.003
Dahl EK, Møller S, Kjær A, Petersen CL, Bendtsen F, Krag A. Diastolic and autonomic dysfunction in early cirrhosis: a dobutamine stress study. Scand J Gastroenterol. 2014; 49(3):362-72. https://doi.org/10 .3109/00365521.2013.867359 PMid:24329122 DOI: https://doi.org/10.3109/00365521.2013.867359
Davis BC, Bajaj JS. Effects of alcohol on the brain in cirrhosis: beyond hepatic encephalopathy. Alcohol Clin Exp Res. 2018; 42(4):660-7. https://doi. org/10.1111/acer.13605 PMid:29417604 DOI: https://doi.org/10.1111/acer.13605
Prabhakar V, Mazumder A, Das S, Kanda A. Uncontrolled Hypertension: Silent but deadly culprit behind a multitude of health woes. Allelopathy Journal. 2023; 59(2). DOI: https://doi.org/10.26651/allelo.j/2023-59-2-1440
Xanthopoulos A, Starling RC, Kitai T, Triposkiadis F. Heart failure and liver disease: cardio hepatic interactions. JACC Heart Fail. 2019; 7(2):87-97. https://doi.org/10.1016/j.jchf.2018.10.007 PMid: 30553904 DOI: https://doi.org/10.1016/j.jchf.2018.10.007
Betrosian AP, Agarwal B, Douzinas EE. Acute renal dysfunction in liver diseases. World J Gastroenterol. 2007; 13(42):5552-9. https://doi.org/10.3748/wjg.v13. i42.5552 PMid:17948928 PMCid:PMC4172733 DOI: https://doi.org/10.3748/wjg.v13.i42.5552
Acevedo J, Fernández J, Prado V, Silva A, Castro M, Pavesi M, et al. Relative adrenal insufficiency in decompensated cirrhosis. Relationship to the shortterm risk of severe sepsis, hepatorenal syndrome and death. Hepatology. 2013; 58(5):1757-65. https://doi. org/10.1002/hep.26535 PMid:23728792 DOI: https://doi.org/10.1002/hep.26535
Nicolaides N, Lamprokostopoulou A, Sertedaki A, Charmandari E. Recent advances in the molecular mechanisms causing primary generalized glucocorticoid resistance. Hormones (Athens). 2016; 15(1):23-34. https://doi.org/10.14310/ horm.2002.1660 PMid:27086682 DOI: https://doi.org/10.1007/BF03401400
Livingstone DE, Di Rollo EM, Yang C, Codrington LE, Mathews JA, Kara M, et al. Relative adrenal insufficiency in mice deficient in 5α-reductase 1. J Endocrinol. 2014; 222(2):257-66. https://doi. org/10.1530/JOE-13-0563 PMid:24872577 PMCid: PMC4104038 DOI: https://doi.org/10.1530/JOE-13-0563
Vegiopoulos A, Herzig S. Glucocorticoids, metabolism, and metabolic diseases. Mol Cell Endocrinol. 2007; 275(1-2):43-61. https://doi. org/10.1016/j.mce.2007.05.015 PMid:17624658 DOI: https://doi.org/10.1016/j.mce.2007.05.015
Petrescu AD, Kain J, Liere V, Heavener T, DeMorrow S. Hypothalamus-pituitary-adrenal dysfunction in cholestatic liver disease. Front Endocrinol. 2018; 9:660. https://doi.org/10.3389/fendo.2018.00660 PMid:3 0483216 PMCid:PMC6240761 DOI: https://doi.org/10.3389/fendo.2018.00660
Crosby KM, Bains JS. The intricate link between glucocorticoids and endocannabinoids at stressrelevant synapses in the hypothalamus. Neuroscience. 2012; 204:31-7. https://doi.org/10.1016/j. neuroscience.2011.11.049 PMid:22155492 DOI: https://doi.org/10.1016/j.neuroscience.2011.11.049
Livingstone DE, Di Rollo EM, Mak TC, Sooy K, Walker BR, Andrew R. Metabolic dysfunction in female mice with disruption of 5α-reductase 1. J Endocrinol. 2017; 232(1):29-36. https://doi.org/10.1530/JOE-16-0125 PMid:27647861 PMCid:PMC5118938 DOI: https://doi.org/10.1530/JOE-16-0125
Kanda A, Mazumder A, Das S, Prabhakar V, Singh T, Kumari S, Mishra A. Regulation of autophagy in neurodegenerative diseases: A brief review on autophagy therapy for neurodegenerative diseases. International Journal of Drug Delivery Technology. 2023; 13(1):423-33. https://doi.org/10.25258/ijddt. 13.1.68 DOI: https://doi.org/10.25258/ijddt.13.1.68
Tsai MH, Peng YS, Chen YC, Liu NJ, Ho YP, Fang JT, et al. Adrenal insufficiency in patients with cirrhosis, severe sepsis, and septic shock. Hepatology. 2006; 43(4):673-81. https://doi.org/10.1002/hep.21101 PMid:16557538 DOI: https://doi.org/10.1002/hep.21101
Fernández J, Escorsell A, Zabalza M, Felipe V, Navasa M, Mas A, et al. Adrenal insufficiency in patients with cirrhosis and septic shock: effect of treatment with hydrocortisone on survival. Hepatology. 2006; 44(5):1288-95. https://doi.org/10.1002/hep.21352 PMid:17058239 DOI: https://doi.org/10.1002/hep.21352
Pozza C, Graziadio C, Giannetta E, Lenzi A, Isidori AM. Management strategies for aggressive Cushing’s syndrome: from macroadenomas to ectopics. J Oncol. 2012; 2012:685213. https://doi. org/10.1155/2012/685213. PMid:22934113 PMCid: PMC3425913 DOI: https://doi.org/10.1155/2012/685213
Lu Y, Zhang Z, Xiong X, Wang X, Li J, Shi G, et al. Glucocorticoids promote hepatic cholestasis in mice by inhibiting the transcriptional activity of the farnesoid X receptor. Gastroenterology. 2012; 143(6):1630-40.e8. https://doi.org/10.1053/j. gastro.2012.08.029 PMid:22922423 DOI: https://doi.org/10.1053/j.gastro.2012.08.029
Quinn M, Ueno Y, Pae HY, Huang L, Frampton G, Galindo C, et al. Suppression of the HPA axis during extrahepatic biliary obstruction induces cholangiocyte proliferation in the rat. Am J Physiol Gastrointest Liver Physiol. 2012; 302(1):G182-93. https://doi.org/10.1152/ajpgi.00205.2011 PMid: 21979757 PMCid:PMC3345968 DOI: https://doi.org/10.1152/ajpgi.00205.2011
Memel ZN, Wang J, Corey KE. intermittent Fasting as a Treatment for nonalcoholic Fatty liver Disease: what is the evidence? Clin Liver Dis. 2022; 19(3):101- 5. https://doi.org/10.1002/cld.1172 PMid:35355842 PMCid:PMC8958240 DOI: https://doi.org/10.1002/cld.1172
Ahmad S, Chowdhury TA. Fasting during Ramadan in people with chronic kidney disease: a review of the literature. Ther Adv Endocrinol Metab. 2019; 10:2042018819889019. https://doi. org/10.1177/2042018819889019 PMid:31798822 PMCid:PMC6859673 DOI: https://doi.org/10.1177/2042018819889019
Mari A, Khoury T, Baker M, Said Ahmad H, Abu Baker F, Mahamid M. The impact of Ramadan fasting on fatty liver disease severity: a retrospective casecontrol study from Israel. Isr Med Assoc J. 2021; 23(2):94-8.
Aliasghari F, Izadi A, Gargari BP, Ebrahimi S. The Effects of Ramadan fasting on body composition, blood pressure, glucose metabolism, and markers of inflammation in NAFLD patients: an observational trial. J Am Coll Nutr. 2017; 36(8):640-5. https://doi. org/10.1080/07315724.2017.1339644 PMid:28922096 DOI: https://doi.org/10.1080/07315724.2017.1339644
Ma J, Cheng Y, Su Q, Ai W, Gong L, Wang Y, et al. Effects of intermittent fasting on liver physiology and metabolism in mice. Exp Ther Med. 2021; 22(3):950. https://doi.org/10.3892/etm.2021.10382 PMid:34335892 PMCid:PMC8290466 DOI: https://doi.org/10.3892/etm.2021.10382
De Cabo R, Mattson MP. Effects of intermittent fasting on health, ageing, and disease. N Engl J Med. 2019; 381(26):2541-51. https://doi.org/10.1056/ NEJMra1905136 PMid:31881139 DOI: https://doi.org/10.1056/NEJMra1905136
Cai H, Qin YL, Shi ZY, Chen JH, Zeng MJ, Zhou W, et al. Effects of alternate day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial. BMC Gastroenterol. 2019; 19(1):219. https://doi. org/10.1186/s12876-019-1132-8 PMid:31852444 PMCid:PMC6921505 DOI: https://doi.org/10.1186/s12876-019-1132-8
Wang X, Li Q, Liu Y, Jiang H, Chen W. Intermittent fasting versus continuous energy-restricted diet for patients with type 2 diabetes mellitus and metabolic syndrome for glycemic control: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2021; 179:109003. https://doi.org/10.1016/j.diabres.2021.109003 PMid:34391831 DOI: https://doi.org/10.1016/j.diabres.2021.109003
Harvie M, Wright C, Pegington M, McMullan D, Mitchell E, Martin B, et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr. 2013; 110(8):1534-47. https://doi.org/10.1017/ S0007114513000792 PMid:23591120 PMCid: PMC5857384 DOI: https://doi.org/10.1017/S0007114513000792
Bachara SC, Bacharb R, Jannatc K, Jahanc R, Rahmatullahc M. Hepatoprotective natural products. Med Nat Prod Dis-Focus Approach. 2020; 207. https://doi.org/10.1016/bs.armc.2020.06.003 DOI: https://doi.org/10.1016/bs.armc.2020.06.003
Wakchaure D, Jain D, Singhai AK, Somani R. Hepatoprotective activity of Symplocos racemosa bark on carbon tetrachloride-induced hepatic damage in rats. J Ayurveda Integr Med. 2011; 2(3):137-43. https:// doi.org/10.4103/0975-9476.85552 PMid:22022156 PMCid:PMC3193685 DOI: https://doi.org/10.4103/0975-9476.85552
Khan H, Ullah H, Nabavi SM. Mechanistic insights of hepatoprotective effects of curcumin: therapeutic updates and prospects. Food Chem Toxicol. 2019; 124:182-91. https://doi.org/10.1016/j.fct.2018.12.002 PMid:30529260 DOI: https://doi.org/10.1016/j.fct.2018.12.002
Feng D, Zou J, Su DF, Mai HY, Zhang SS, Li PY, et al. Curcumin prevents high-fat diet-induced hepatic steatosis in ApoE−/− mice by improving intestinal barrier function and reducing endotoxin and liver TLR4/NF-κB inflammation. Nutr Metab (Lond). 2019; 16(1):79. https://doi.org/10.1186/s12986-019- 0410-3 PMid:31788011 PMCid:PMC6858759 DOI: https://doi.org/10.1186/s12986-019-0410-3
Ko J, Yeh WJ, Huang WC, Yang HY. Camellia oleifera seed extract mildly ameliorates carbon tetrachlorideinduced hepatotoxicity in rats by suppressing inflammation. J Food Sci. 2019; 84(6):1586-91. https:// doi.org/10.1111/1750-3841.14645 PMid:31116885 DOI: https://doi.org/10.1111/1750-3841.14645
Yeh WJ, Ko J, Huang WC, Cheng WY, Yang HY. Crude extract of Camellia oleifera pomace ameliorates the progression of non-alcoholic fatty liver disease via decreasing fat accumulation, insulin resistance and inflammation. Br J Nutr. 2020; 123(5):508-15. https://doi.org/10.1017/S0007114519003027 PMid: 31771682 DOI: https://doi.org/10.1017/S0007114519003027
Kumar R, Singh AK, Gupta A, Bishayee A, Pandey AK. Therapeutic potential of Aloe vera—A miracle gift of nature. Phytomedicine. 2019; 60:152996. https://doi. org/10.1016/j.phymed.2019.152996 PMid:31272819 DOI: https://doi.org/10.1016/j.phymed.2019.152996
Lakshmi T, Sri Renukadevi BS, Senthilkumar S, Haribalan P, Parameshwari R, Vijayaraghavan R, et al. Seed and bark extracts of Acacia catechu protect the liver from acetaminophen induced hepatotoxicity by modulating oxidative stress, antioxidant enzymes and liver function enzymes in the Wistar rat model. Biomed Pharmacother. 2018; 108:838-44. https://doi. org/10.1016/j.biopha.2018.08.077 PMid:30372895 DOI: https://doi.org/10.1016/j.biopha.2018.08.077
Meng X, Tang GY, Liu PH, Zhao CJ, Liu Q, Li HB. Antioxidant activity and hepatoprotective effect of 10 medicinal herbs on CCl4-induced liver injury in mice. World J Gastroenterol. 2020; 26(37):5629-45. https:// doi.org/10.3748/wjg.v26.i37.5629 PMid:33088157 PMCid:PMC7545387 DOI: https://doi.org/10.3748/wjg.v26.i37.5629
Zhu C, Wang J, Liu W, Chen L, Abdelrahim ME, Ren L. Ginseng consumption possible effect on liver cancer: A meta-analysis. Nutr Cancer. 2021; 73(9):1581-9. https://doi.org/10.1080/01635581.2020 .1803929 PMid:32757804 DOI: https://doi.org/10.1080/01635581.2020.1803929
Roh E, Hwang HJ, Kim JW, Hong SH, Kim JA, Lee YB, et al. Ginsenoside Mc1 improves liver steatosis and insulin resistance by attenuating ER stress. J Ethnopharmacol. 2020; 259:112927. https://doi. org/10.1016/j.jep.2020.112927 PMid:32387461 DOI: https://doi.org/10.1016/j.jep.2020.112927
Ning C, Gao X, Wang C, Huo X, Liu Z, Sun H, et al. Protective effects of ginsenoside Rg1 against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice through inhibiting toll-like receptor 4 signalling pathway. Int Immunopharmacol. 2018; 61:266-76. https://doi.org/10.1016/j.intimp. 2018.06.008 PMid:29902710 DOI: https://doi.org/10.1016/j.intimp.2018.06.008
Zhang Y, Sun K, Liu YY, Zhang YP, Hu BH, Chang X, et al. Ginsenoside Rb1 ameliorates lipopolysaccharideinduced albumin leakage from rat mesenteric venules by intervening in both trans- and paracellular pathways. Am J Physiol Gastrointest Liver Physiol. 2014; 306(4):G289-300. https://doi.org/10.1152/ ajpgi.00168.2013 PMid:24356882 DOI: https://doi.org/10.1152/ajpgi.00168.2013
Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy E, Marette A, et al. Berry polyphenols and fibres modulate distinct microbial metabolic functions and gut microbiota enterotype-like clustering in obese mice. Front Microbiol. 2020; 11:2032. https:// doi.org/10.3389/fmicb.2020.02032 PMid:32983031 PMCid:PMC7479096 DOI: https://doi.org/10.3389/fmicb.2020.02032
Zhan W, Liao X, Tian T, Yu L, Liu X, Li B, et al. Study on the effects of blueberry treatment on histone acetylation modification of CCl(4)- induced liver disease in rats. Genet Mol Res. 2017; 16(1):gmr16019188. https://doi.org/10.4238/ gmr16019188 PMid:28218781 DOI: https://doi.org/10.4238/gmr16019188
Liu JH, Hao WJ, He ZY, Kwek E, Zhu HY, Ma N, et al. Blueberry and cranberry anthocyanin extracts reduce body weight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur J Nutr. 2021; 60(5):2735-46. https://doi.org/10.1007/s00394- 020-02446-3 PMid:33392758 DOI: https://doi.org/10.1007/s00394-020-02446-3
Yan Z, Yang F, Hong Z, Wang S, Jinjuan Z, Han B, Xie R, Leng F, Yang Q. Blueberry attenuates liver fibrosis, protects intestinal epithelial barrier, and maintains gut microbiota homeostasis. Canadian Journal of Gastroenterology and Hepatology. 2019. https:// doi.org/10.1155/2019/5236149 PMid:31886154 PMCid:PMC6893245 DOI: https://doi.org/10.1155/2019/5236149
Zhang B, Cheng M, Wang Y, Zhang Q, Yu L, Zhao X, et al. Effects of blueberry on hepatic fibrosis and expression of nuclear transcription factor-κB in rats. Chin J Hepatol. 2018; 26(08):590-5. doi: 10.3760/cma .j.issn.1007-3418.2018.08.006.
Qiu P, Dong Y, Zhu T, Luo YY, Kang XJ, Pang MX, et al. Semen hoveniae extract ameliorates alcohol-induced chronic liver damage in rats via modulation of the abnormalities of the gut-liver axis. Phytomedicine. 2019; 52:40-50. https://doi. org/10.1016/j.phymed.2018.09.209 PMid:30599911 DOI: https://doi.org/10.1016/j.phymed.2018.09.209
Huang ZR, Deng JC, Li QY, Cao YJ, Lin YC, Bai WD, et al. Protective mechanism of common buckwheat (Fagopyrum esculentum Moench.) against nonalcoholic fatty liver disease associated with dyslipidemia in mice fed a high-fat and high-cholesterol diet. J Agric Food Chem. 2020; 68(24):6530-43. https://doi.org/10.1021/acs.jafc. 9b08211 PMid:32383865 DOI: https://doi.org/10.1021/acs.jafc.9b08211
Vitaglione P, Mazzone G, Lembo V, D’Argenio G, Rossi A, Guido M, et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis. J Nutr Sci. 2019; 8:e15. https://doi.org/10.1017/jns.2019.10 PMid:31037218 PMCid:PMC6477661 DOI: https://doi.org/10.1017/jns.2019.10
Devarbhavi H. Ayurvedic and herbal medicineinduced liver injury: it is time to wake up and take notice. Indian J Gastroenterol. 2018; 37(1):5-7. https:// doi.org/10.1007/s12664-018-0820-6 PMid:29423815 DOI: https://doi.org/10.1007/s12664-018-0820-6
Faghihzadeh F, Hekmatdoost A, Adibi P. Resveratrol and liver: A systematic review. J Res Med Sci Off J Isfahan Univ Med Sci. 2015; 20(8):797-810. https:// doi.org/10.4103/1735-1995.168405 PMid:26664429 PMCid:PMC4652315 DOI: https://doi.org/10.4103/1735-1995.168405
Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, et al. Resveratrol: A double-edged sword in health benefits. Biomedicines. 2018; 6(3):91. https://doi.org/10.3390/biomedicines6030091 PMid:30205595 PMCid:PMC6164842 DOI: https://doi.org/10.3390/biomedicines6030091
Yu Y, Zhang Z, Chang C. Chlorogenic acid intake guidance: sources, health benefits, and safety. Asia Pac J Clin Nutr. 2022; 31(4):602-10. https://doi. org/10.6133/apjcn.202212_31(4).0003
Yang F, Luo L, Zhu ZD, Zhou X, Wang Y, Xue J, et al. Chlorogenic acid inhibits liver fibrosis by blocking the miR-21-regulated TGF-β1/Smad7 signalling pathway in vitro and in vivo. Front Pharmacol. 2017; 8:929. https://doi.org/10.3389/fphar.2017.00929 PMid:29311932 PMCid:PMC5742161 DOI: https://doi.org/10.3389/fphar.2017.00929
Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods. 2017; 6(10):92. https:// doi.org/10.3390/foods6100092 PMid:29065496 PMCid:PMC5664031 DOI: https://doi.org/10.3390/foods6100092
Shan L, Liu Z, Ci L, Shuai C, Lv X, Li J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int Immunopharmacol. 2019; 75:105765. https://doi.org/10.1016/j.intimp. 2019.105765 PMid:31336335 DOI: https://doi.org/10.1016/j.intimp.2019.105765
Wang R, Dong Z, Lan X, Liao Z, Chen M. Sweroside alleviated LPS-induced inflammation via SIRT1 mediating NF-κB and FOXO1 signalling pathways in RAW264.7 cells. Molecules. 2019; 24(5):872. https:// doi.org/10.3390/molecules24050872 PMid:30823686 PMCid:PMC6429084 DOI: https://doi.org/10.3390/molecules24050872
Yang G, Jang JH, Kim SW, Han SH, Ma KH, Jang JK, et al. Sweroside prevents non-alcoholic steatohepatitis by suppressing the activation of the NLRP3 inflammasome. Int J Mol Sci. 2020; 21(8):2790. https://doi.org/10.3390/ijms21082790 PMid:32316419 PMCid:PMC7216241 DOI: https://doi.org/10.3390/ijms21082790
Ma Z, Chu L, Liu H, Wang W, Li J, Yao W, et al. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats. Sci Rep. 2017; 7:44819. https://doi.org/10.1038/ srep44819 PMid:28300221 PMCid:PMC5353673 DOI: https://doi.org/10.1038/srep44819
Li YC, Qiao JY, Wang BY, Bai M, Shen JD, Cheng YX. Paeoniflorin ameliorates fructose-induced insulin resistance and hepatic steatosis by activating LKB1/AMPK and AKT pathways. Nutrients. 2018; 10(8):1024. https://doi.org/10.3390/nu10081024 PMid:30081580 PMCid:PMC6116094 DOI: https://doi.org/10.3390/nu10081024
Xu N, Luo H, Li M, Wu J, Wu X, Chen L, et al. β-patchoulene improves lipid metabolism to alleviate non-alcoholic fatty liver disease via activating AMPK signalling pathway. Biomed Pharmacother. 2021; 134:111104. https://doi.org/10.1016/j. biopha.2020.111104 PMid:33341045 DOI: https://doi.org/10.1016/j.biopha.2020.111104
Luo H, Xu N, Wu J, Gan Y, Chen L, Guan F, et al. β-patchoulene protects against nonalcoholic steatohepatitis via interrupting the vicious circle among oxidative stress, histanoxia and lipid accumulation in rats. Int Immunopharmacol. 2021; 98:107915. https://doi.org/10.1016/j.intimp. 2021.107915 PMid:34198236 DOI: https://doi.org/10.1016/j.intimp.2021.107915
Han X, Cui ZY, Song J, Piao HQ, Lian LH, Hou LS, et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease in FXR/LXRs-dependent manner. Chem Biol Interact. 2019; 311:108794. https://doi. org/10.1016/j.cbi.2019.108794 PMid:31421115 DOI: https://doi.org/10.1016/j.cbi.2019.108794
Lv J, Sharma A, Zhang T, Wu Y, Ding X. Pharmacological review on Asiatic acid and its derivatives: A potential compound. SLAS Technol. 2018; 23(2):111-27. https:// doi.org/10.1177/2472630317751840 PMid:29361877 DOI: https://doi.org/10.1177/2472630317751840
Wang D, Lao L, Pang X, Qiao Q, Pang L, Feng Z, et al. Asiatic acid from Potentilla chinensis alleviates nonalcoholic fatty liver by regulating endoplasmic reticulum stress and lipid metabolism. Erratum in Int Immunopharmacol. 2020; 84:106291. https://doi. org/10.1016/j.intimp.2020.106291 PMid:32094005 DOI: https://doi.org/10.1016/j.intimp.2020.106291
Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: A potential herbal cureall. Indian J Pharm Sci. 2010; 72(5):546-56. https:// doi.org/10.4103/0250-474X.78519 PMid:21694984 PMCid:PMC3116297 DOI: https://doi.org/10.4103/0250-474X.78519
Gwaltney-Brant SM. Nutraceuticals in hepatic diseases. In Nutraceuticals. 2021; 117-29. Academic Press. https://doi.org/10.1016/B978-0-12-821038- 3.00008-2 DOI: https://doi.org/10.1016/B978-0-12-821038-3.00008-2
Kong R, Wang N, Luo H, Lu J. Hesperetin mitigates bile duct ligation-induced liver fibrosis by inhibiting extracellular matrix and cell apoptosis via the TGF- β1/ Smad pathway. Curr Mol Med. 2018; 18(1):15-24. https://doi.org/10.2174/15665240186661806080849 47 PMid:29879887 DOI: https://doi.org/10.2174/1566524018666180608084947
Wang W, Chen J, Mao J, Li H, Wang M, Zhang H, et al. Genistein ameliorates non-alcoholic fatty liver disease by targeting the thromboxane A2 pathway. J Agric Food Chem. 2018; 66(23):5853-9. https://doi. org/10.1021/acs.jafc.8b01691 PMid:29771124 DOI: https://doi.org/10.1021/acs.jafc.8b01691
Liu XJ, Jiang XQ, Fang YJ, Xia DZ, Wang SW, Zhong SY. Protective effect of total flavonoids from Fructus aurantii on lung injury of asthma mice infected with RSV through NF-kappaB signalling pathway. Chin. J. Nosocomiol. 2021; 31(22):3376-80.
Chen LR, Ko NY, Chen KH. Isoflavone supplements for menopausal women: A systematic review. Nutrients. 2019; 11(11):2649. https://doi.org/10.3390/ nu11112649 PMid:31689947 PMCid:PMC6893524 DOI: https://doi.org/10.3390/nu11112649
Cremonini E, Iglesias DE, Matsukuma KE, Hester SN, Wood SM, Bartlett M, et al. Supplementation with cyanidin and delphinidin mitigates highfat diet-induced endotoxemia and associated liver inflammation in mice. Food Funct. 2022; 13(2):781-94. https://doi.org/10.1039/D1FO03108B PMid:34981106 DOI: https://doi.org/10.1039/D1FO03108B
Xu Y, Ke H, Li Y, Xie L, Su H, Xie J, et al. Malvidin-3- O-glucoside from blueberry ameliorates nonalcoholic fatty liver disease by regulating transcription factor EB-mediated lysosomal function and activating the Nrf2/ ARE signalling pathway. J Agric Food Chem. 2021; 69(16):4663-73. https://doi.org/10.1021/acs. jafc.0c06695 PMid:33787249 DOI: https://doi.org/10.1021/acs.jafc.0c06695
Zou W, Zhang C, Gu X, Li X, Zhu H. Metformin in combination with malvidin prevents progression of non-alcoholic fatty liver disease via improving lipid and glucose metabolisms and inhibiting inflammation in type 2 diabetes rats. Drug Des Dev Ther. 2021; 15:2565-76. https://doi.org/10.2147/DDDT.S307257 PMid:34168429 PMCid:PMC8218939 DOI: https://doi.org/10.2147/DDDT.S307257
Enaru B, Drețcanu G, Pop TD, Stănilă A, Diaconeasa Z. Anthocyanins: factors affecting their stability and degradation. Antioxidants (Basel, Switzerland). 2021; 10(12):1967. https://doi.org/10.3390/antiox10121967 PMid:34943070 PMCid:PMC8750456 DOI: https://doi.org/10.3390/antiox10121967
Wang X, Liu J, Zhang X, Zhao S, Zou K, Xie J, et al. Seabuckthorn berry polysaccharide extracts protect against acetaminophen induced hepatotoxicity in mice via activating the Nrf-2/HO-1-SOD-2 signaling pathway. Phytomedicine. 2018; 38:90- 7. https://doi.org/10.1016/j.phymed.2017.11.007 PMid:29425659 DOI: https://doi.org/10.1016/j.phymed.2017.11.007
Wang G, Yang X, Wang J, Zhong D, Zhang R, Zhang Y, et al. Walnut green husk polysaccharides prevent obesity, chronic inflammatory responses, nonalcoholic fatty liver disease and colonic tissue damage in high-fat diet-fed rats. Int J Biol Macromol. 2021; 182:879-98. https://doi.org/10.1016/j. ijbiomac.2021.04.047 PMid:33857511 DOI: https://doi.org/10.1016/j.ijbiomac.2021.04.047
Qu H, Gao X, Wang ZY, Yi JJ. Comparative study on hepatoprotection of pine nut (Pinus koraiensis Sieb. et Zucc.) polysaccharide against different types of chemical-induced liver injury models in vivo [Pinus koraiensis Sieb. et Zucc]. Int J Biol Macromol. 2020; 155:1050-9. https://doi.org/10.1016/j. ijbiomac.2019.11.069 PMid:31712149 DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.069
Munk MD. Pine mouth (pine nut) syndrome: description of the toxidrome, preliminary case definition, and best evidence regarding an apparent etiology. Neurol. 2012; 32(5):525-7. https://doi. org/10.1055/s-0033-1334472 PMid:23677661 DOI: https://doi.org/10.1055/s-0033-1334472
Wu J, Shao H, Zhang J, Ying Y, Cheng Y, Zhao D, et al. Mussel polysaccharide alpha-D-glucan (MPA) protects against non-alcoholic fatty liver disease by maintaining the homeostasis of gut microbiota and regulating related gut-liver axis signalling pathways. Int J Biol Macromol. 2019; 130:68-78. https://doi.org/10.1016/j.ijbiomac.2019.02.097 PMid:30797009 DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.097