Green Synthesis of Zinc Oxide Nanoparticles in the Fruit Extract of Hylocereus undatus Linn. and its Antiurolithiatic Activity Against Struvite Kidney Stones
DOI:
https://doi.org/10.18311/jnr/2024/34217Keywords:
Biofabrication, Magnetic Stirrer Method, Secondary Metabolites, Single Diffusion Method, Struvite Stones, Zinc Oxide NanoparticlesAbstract
Aim: The objective of the study is to synthesize and characterize the properties of zinc oxide nanoparticles from natural sources. The aqueous extract of Hylocereus undatus Linn. fruit was used to synthesize Zinc oxide nanoparticles that were taken for the investigation of antiurolithiatic activity against the struvite stones. Methods: The Preliminary analysis of phytochemical screenings was carried out to study the secondary metabolites of the fruit. The magnetic stirrer method was used to synthesize the Zinc oxide Nanoparticles then their characterizations were determined by Ultra Violet (UV) spectral analysis, Fourier Transform Infra-Red (FTIR) analysis, Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Analysis (EDAX) and X-ray Diffraction (XRD) Analysis. Struvite kidney stones were synthesized by a single diffusion method to carry out the antiurolithiatic activity. Results: The results proved the availability of various secondary metabolites and their concentrations. The prepared Zinc oxide Nanoparticles were evaluated by the ultraviolet spectral analysis and the specific range by 274.90nm, organic compounds under the FTIR analysis gave the expected outcome. The external structures by SEM show the body-centred cubic structure. The clear formation of ZnO NPs was revealed by the EDAX analysis. The nature of the crystal by XRD revealed the satisfied outcomes. The struvite kidney crystals were developed and after the crystallization they underwent scaling and morphological observation, and then the rate of inhibition was recorded. Conclusion: It was concluded that this novel work shows extraordinary outcomes. The sample of H. undatus fruit extract has a potent inhibitor of struvite kidney stones. Another focus of the study is on reducing the toxic side effects of nanoparticles through the fabrication of ZnO NP by using fruit extract also successfully exhibited.
Downloads
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vanathi Sundarapandiyan, I. Helen Diana, K. Manjula (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-06-25
Published 2024-07-31
References
Chadha S. Nanotechnology and its application. Int J Agric Food Sci. 2013; 4(10):1011-8.
Krishna RN, Gayathri R, Priya V. Nanoparticles and their applications - A review. Int J Pharm Sci. 2017; 9(1):24.
Godwin MA, Shri KM, Balaji M. Nanoparticles and their applications - A mini-review. Int J Eng Res. 2015; 3(5):11-29.
Ealia SA, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Series: Mat Sci Eng. 2017; 263(3):032019. https://doi.org/10.1088/1757-899X/263/3/032019 DOI: https://doi.org/10.1088/1757-899X/263/3/032019
Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem. 2018; 2018. https://doi.org/10.1155/2018/1062562 PMid:30073019 PMCid:PMC6057429 DOI: https://doi.org/10.1155/2018/1062562
Singh RP, Shukla VK, Yadav RS, Sharma PK, Singh PK, Pandey AC. Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letters. 2011; 2(4):313-7. https://doi.org/10.5185/amlett.indias.204 DOI: https://doi.org/10.5185/amlett.indias.204
Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr. 1998; 17(2):109-15. https://doi.org/10.1080/07315724.1998.10718735 PMid:9550453 DOI: https://doi.org/10.1080/07315724.1998.10718735
Bedi P, Kaur A. An overview on uses of zinc oxide nanoparticles. World J Pharm Pharmaceut Sci. 2015; 4(12): 1177-96.
Manjunatha RL, Usharani KV, Naik D. Synthesis and characterization of ZnO nanoparticles: A review. J Pharmacogn Phytochem. 2019; 8(3):1095-101.
Shankar A, Sumathy S. Correlation of glycated hemoglobin and glucose levels after oral glucose tolerance test in gestational diabetes patients: A cross sectional study. Rom J Diabetes Nutr Metab Dis. 2021; 28(2):137-41.
Kudachi JS, Maisale AB, Patil AS, Hadagale JS. Evaluation of in vitro anti urolithiasis activity of herbal drugs. World J Bio Pharm Health Sci. 2022; 12(2):073-8. https://doi.org/10.30574/wjbphs.2022.12.2.0168 DOI: https://doi.org/10.30574/wjbphs.2022.12.2.0168
Khan F, Haider MF, Singh MK, Sharma P, Kumar T, Neda EN. A comprehensive review on kidney stones, its diagnosis and treatment with allopathic and ayurvedic medicines. Urol Nephrol Open Access J. 2019; 7(4):69-74. https://doi.org/10.15406/unoaj.2019.07.00247 DOI: https://doi.org/10.15406/unoaj.2019.07.00247
Gomase PV, Pawar SP. Urolithiasis (kidney stones) current pharmacological diagnosis and management. J Drug Deliv Therapeut. 2019; 9(4):726-37.
Arya P, Pandey S, Verma V. Kidney stone formation and use of medicinal plants as antiurolithiatic agents. Univ J Pharmaceut Res. 2017; 2(4):43-8. https://doi.org/10.22270/ujpr.v2i4.RW1 DOI: https://doi.org/10.22270/ujpr.v2i4.RW1
Sakhaee K. Epidemiology and clinical pathophysiology of uric acid kidney stones. J Nephrol. 2014; 27:241-5. https://doi.org/10.1007/s40620-013-0034-z PMid:24497296 PMCid:PMC4696481 DOI: https://doi.org/10.1007/s40620-013-0034-z
Moussa M, Papatsoris AG, Chakra MA, Moussa Y. Update on cystine stones: Current and future concepts in treatment. Intractable Rare Dis Res. 2020; 9(2):71-8. https://doi.org/10.5582/irdr.2020.03006 PMid:32494553 PMCid:PMC7263987 DOI: https://doi.org/10.5582/irdr.2020.03006
Mahesh M, Praveen AR, Kumar HA. Characterization of Novel (Hylocereus spp.) dragon fruit and their applications: A review. Int J Res Publ Rev. 2021; 2(11):1188-91.
Hossain FM, Numan SM, Akhtar S. Cultivation, nutritional value, and health benefits of Dragon Fruit (Hylocereus spp.): A review. Int J Hortic Sci Technol. 2021; 8(3):259-69.
Kumar S, Tripathi V, Kumari A, Chaudhary V, Kumawat P. A-review: On nutritional and medicinal importance of dragon fruit (Hylocereus species). Ecol Environ Conserv. 2022; 28:247-53. https://doi.org/10.53550/EEC.2022.v28i07s.041 DOI: https://doi.org/10.53550/EEC.2022.v28i07s.041
Hitendraprasad PP, Hegde K, Shabaraya AR. Hylocereus undatus (Dragon Fruit): A brief review. Int J Pharm Sci Rev Res. 2020; 60(1):55-7.
Mazumder TZ, Sharma MK, Lal M. Phytochemical properties of some important medicinal plants of north-east India: A brief review. J Pharm Innov. 2022; 11(2):167-75.
Ibrahim SR, Mohamed GA, Khedr AI, Zayed MF, El‐Kholy AA. Genus hylocereus: Beneficial phytochemicals, nutritional importance, and biological relevance - A review. J Food Biochem. 2018; 42(2):e12491. https://doi.org/10.1111/jfbc.12491 DOI: https://doi.org/10.1111/jfbc.12491
Olvera MT, Salazar JR, Gutiérrez IN, Cabrera DS, Nava AC, Guevara JR. Potential uses of Hylocereus undatus (haworth) Britton and rose by-products: Antimicrobial activity and flavonoid content from aerial parts extracts. Revista del Centro de Investigación de la Universidad La Salle. 2019; 13(51):9-20. https://doi.org/10.26457/recein.v13i51.1870 DOI: https://doi.org/10.26457/recein.v13i51.1870
Nortjie E, Basitere M, Moyo D, Nyamukamba P. Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: A review. Plants. 2022; 11(15):2011. https://doi.org/10.3390/plants11152011 PMid:35956489 PMCid:PMC9370299 DOI: https://doi.org/10.3390/plants11152011
Lu J, Ali H, Hurh J, Han Y, Batjikh I, Rupa EJ, et al. The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik. 2019; 184:82-9. https://doi.org/10.1016/j.ijleo.2019.03.050 DOI: https://doi.org/10.1016/j.ijleo.2019.03.050
Raut DPS, Thorat RT. Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves. Int J Sci Res. 2015; 4:1225-8.
Prakash J, Vedanayaki S. Organoleptic, fluorescence, qualitative and quantitative analysis of bulb extract of Zephyranthes citrina. J Pharmacogn Phytochem. 2019; 8(3):2531-6.
Velavan S. Phytochemical techniques - A review. World J Sci Res. 2015; 1(2):80-91. https://doi.org/10.1002/rwm3.20270 DOI: https://doi.org/10.1002/rwm3.20270
Ghaffar S, Abbas A, Naeem-ul-Hassan M, Assad N, Sher M, et al. Improved photocatalytic and antioxidant activity of olive fruit extract-mediated ZnO nanoparticles. Antioxidants. 2023; 12(6):1201. https://doi.org/10.3390/antiox12061201 PMid:37371931 PMCid:PMC10295640 DOI: https://doi.org/10.3390/antiox12061201
Liliwirianis N, Musa NL, Zain WZ, Kassim J, Karim SA. Premilinary studies on phytochemical screening of Ulam and fruit from Malaysia. J Chem. 2000. https://doi.org/10.1155/2011/464595 DOI: https://doi.org/10.1155/2011/464595
Ifeanyichukwu UL, Fayemi OE, Ateba CN. Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules. 2020; 25(19):4521. https://doi.org/10.3390/molecules25194521 PMid:33023149 PMCid:PMC7583900 DOI: https://doi.org/10.3390/molecules25194521
Noorjahan CM, Shahina SJ, Deepika T, Rafiq S. Green synthesis and characterization of zinc oxide nanoparticles from Neem (Azadirachta indicia). Int J Sci Res. 2015; 4(30):5751-3.
Jayachandran A, Aswathy TR, Nair AS. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophy Rep. 2021; 26:100995. https://doi.org/10.1016/j.bbrep.2021.100995 PMid:33898767 PMCid:PMC8055550 DOI: https://doi.org/10.1016/j.bbrep.2021.100995
Jayappa MD, Ramaiah CK, Kumar MA, Suresh D, Prabhu A, Devasya RP, et al. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications. Appl Nanosci. 2020; 10:3057-74. https://doi.org/10.1007/s13204-020-01382-2 PMid:32421069 PMCid:PMC7223004 DOI: https://doi.org/10.1007/s13204-020-01382-2
Manokari M, Latha R, Priyadharshini S, Cokul RM, Beniwal P, Shekhawat MS. Green synthesis of zinc oxide nanoparticles from aqueous extracts of Sesamum indicum L. and their characterization. World News Nat Sci. 2019; 23(2019):200-10.
Vaishnav J, Subha V, Kirubanandan S, Arulmozhi M, Renganathan S. Green synthesis of zinc oxide nanoparticles by Celosia argentea and its characterization. J Optoelect Biomed Mat. 2017; 9:59-71.
Khan AU, Malik N, Singh B, Ansari NH, Rehman M, Yadav A. Biosynthesis, and characterization of Zinc oxide nanoparticles (ZnONPs) obtained from the extract of waste of strawberry. J Umm Al-Qura Univ Appl Sci. 2023:1-8. https://doi.org/10.1007/s43994-023-00038-5 DOI: https://doi.org/10.1007/s43994-023-00038-5
Aminuzzaman M, Ying LP, Goh WS, Watanabe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mat Sci. 2018; 41. https://doi.org/10.1007/s12034-018-1568-4 DOI: https://doi.org/10.1007/s12034-018-1568-4
Modi S, Fulekar MH. Green synthesis of zinc oxide nanoparticles using garlic skin extract and its characterization. J Nanostruct. 2020; 10(1):20-7.
Ahmad RR, Harun Z, Othman MH, Basri H, Yunos MZ, Ahmad A, et al. Biosynthesis of zinc oxide nanoparticles by using fruit extracts of Ananas comosus and its antibacterial activity. Malays J Fund Appl Sci. 2019; 15:268-73. https://doi.org/10.11113/mjfas.v15n2.1217 DOI: https://doi.org/10.11113/mjfas.v15n2.1217
Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Mat Sci Eng: C. 2016; 59:296-302. https://doi.org/10.1016/j.msec.2015.09.089 PMid:26652376 DOI: https://doi.org/10.1016/j.msec.2015.09.089
Selim YA, Azb MA, Ragab I, Abd El-Azim MHM. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci Rep. 2020; 10(1):3445. https://doi.org/10.1038/s41598-020-60541-1 PMid:32103090 PMCid:PMC7044426 DOI: https://doi.org/10.1038/s41598-020-60541-1
Barzinjy AA, Hamad SM, Esmaeel MM, Aydın SK, Hussain FH. Biosynthesis and characterization of zinc oxide nanoparticles from Punica granatum (pomegranate) juice extract and its application in thin film preparation by spin‐coating method. Micro Nano Lett. 2020; 15(6):415-20. https://doi.org/10.1049/mnl.2019.0501 DOI: https://doi.org/10.1049/mnl.2019.0501
Kwabena DE, Aquisman AE. Morphology of green synthesized ZnO nanoparticles using a low-temperature hydrothermal technique from aqueous Carica papaya extract. Nanosci Nanotechnol. 2019; 9(1):29-36.
Akintelu SA, Folorunso AS. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoScience. 2020; 10(4):848-63. https://doi.org/10.1007/s12668-020-00774-6 DOI: https://doi.org/10.1007/s12668-020-00774-6
Noorjahan CM, Shahina SJ, Deepika T, Rafiq S. Green synthesis and characterization of zinc oxide nanoparticles from Neem (Azadirachta indicia). Int J Sci Eng Tech Res. 2015; 4(30):5751-3.
Chauhan CK, Joshi MJ, Vaidya AD. Growth inhibition of struvite crystals in the presence of herbal extract Commiphora wightii. J Mat Sci: Mat Med. 2009; 20:85-92. https://doi.org/10.1007/s10856-008-3489-z PMid:18568390 DOI: https://doi.org/10.1007/s10856-008-3489-z
Chauhan CK, Joshi MJ. Growth inhibition of Struvite crystals in the presence of juice of Citrus medica Linn. Urol Res. 2008; 36:265-73. https://doi.org/10.1007/s00240-008-0154-4 PMid:18795276 DOI: https://doi.org/10.1007/s00240-008-0154-4
Kaleeswaran B, Ramadevi S, Murugesan R, Srigopalram S, Suman T, Balasubramanian T. Evaluation of anti-urolithiatic potential of ethyl acetate extract of Pedalium murex L. on struvite crystal (kidney stone). J Trad Compl Med. 2019; 9(1):24-37. https://doi.org/10.1016/j.jtcme.2017.08.003 PMid:30671363 PMCid:PMC6335495 DOI: https://doi.org/10.1016/j.jtcme.2017.08.003
Sampathkumar P, Bhuvaneswari S, Sivakumar R, Madhumitha R. Prevention of kidney stone and antimicrobial potential of aqueous extracts of Linum usitatissimum. Annals Agri-Bio Res. 2023; 28(1):51-5.
Slimen IB, Najar T, Abderrabba M. Bioactive compounds of prickly pear [Opuntia ficus-indica (L.) Mill.]. Bioact Comp Underutil Veg Legum. 2020:1-40. https://doi.org/10.1007/978-3-030-44578-2_12-1 DOI: https://doi.org/10.1007/978-3-030-44578-2_12-1
Raj V, Kumar A, Kumar B, Rani S, Sharma C. Plant Opuntia dillenii: A review on its traditional uses, phytochemical and pharmacological properties. EC Pharmaceut Sci. 2015; 1:29-43.
Kinsou LD. Review of literature and phytochimic screening of medicinal plants used in the traditional treatment of brain diseases in Africa. J Phytopharmacy. 2019; 9(6):e5285.
Roghini R, Vijayalakshmi K. Phytochemical screening, quantitative analysis of flavonoids and minerals in ethanolic extract of Citrus paradisi. Int J Pharmaceut Sci Res. 2018; 9(11):4859-64.
Krishnaveni M, Dhanalakshmi R. Qualitative and quantitative study of phytochemicals in Muntingia calabura L. leaf and fruit. World J Pharmaceut Res. 2014; 3(6):1687-96.
Njoya HK, Erifeta GO, Okwuonu CU, Ezinne EZ. Estimation of some phytoconstituents in the aqueous extract of the endocarp, seeds and exocarp of watermelon (Citrullus lanatus) fruit. J Pharmacog Phytochem. 2019; 8(3):4750-7.
Husain WM, Araak JK, Ibrahim OM. Green synthesis of zinc oxide nanoparticles from (Punica granatum L) pomegranate aqueous peel extract. The Iraqi J Vet Med. 2019; 43(2):6-14. https://doi.org/10.30539/iraqijvm.v43i2.524 DOI: https://doi.org/10.30539/iraqijvm.v43i2.524
Arumugam V, Subramaniam S, Krishnan V. Green synthesis and characterization of zinc oxide nanoparticles using Berberis tinctoria Lesch. leaves and fruits extract of multi-biological applications. Nanomed Res J. 2021; 6(2):128-47
Vishnupriya B, Nandhini GE, Anbarasi G. Biosynthesis of zinc oxide nanoparticles using Hylocereus undatus fruit peel extract against clinical pathogens. Mat Today: Proc. 2022; 48:164-8. https://doi.org/10.1016/j.matpr.2020.05.474 DOI: https://doi.org/10.1016/j.matpr.2020.05.474
Shekhawat MS, Ravindran CP, Manokari M. A green approach to synthesize the zinc oxide nanoparticles using aqueous extracts of Ficus benghalensis L. Int J BioSci, Agricult Tech. 2015; 6(1):1.
Shekhawat MS, Manokari M. Biogenesis of zinc oxide nanoparticles using Morinda pubescens JE Smith extracts and their characterization. Int J Bioeng Techn. 2014; 5(1):1.
Abbes N, Bekri I, Cheng M, Sejri N, Cheikhrouhou M, Jun XU. Green synthesis and characterization of zinc oxide nanoparticles using mulberry fruit and their antioxidant activity. Mat Sci. 2022; 28(2):144-50. https://doi.org/10.5755/j02.ms.28314 DOI: https://doi.org/10.5755/j02.ms.28314
Chakraborty S, Farida JJ, Simon R, Kasthuri S, Mary NL. Averrhoe carambola fruit extract assisted green synthesis of ZnO nanoparticles for the photodegradation of Congo red dye. Surfac Interfac. 2020; 19:100488. https://doi.org/10.1016/j.surfin.2020.100488 DOI: https://doi.org/10.1016/j.surfin.2020.100488
Luque PA, Soto-Robles CA, Nava O, Gomez-Gutierrez CM, Castro-Beltran A, Garrafa-Galvez HE, et al. Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract. J Mat Sci: Mat Elect. 2018; 29:9764-70. https://doi.org/10.1007/s10854-018-9015-2 DOI: https://doi.org/10.1007/s10854-018-9015-2
Modi S, Yadav VK, Choudhary N, Alswieleh AM, Sharma AK, Bhardwaj AK, et al. Onion peel waste mediated-green synthesis of zinc oxide nanoparticles and their phytotoxicity on mung bean and wheat plant growth. Materials. 2022; 15(7):2393. https://doi.org/10.3390/ma15072393 PMid:35407725 PMCid:PMC8999814 DOI: https://doi.org/10.3390/ma15072393
Vennila S, Jesurani SS. Eco-friendly green synthesis and characterization of stable ZnO nanoparticles using small Gooseberry fruit extracts. Int J ChemTech Res. 2017; 10(5).
Mohammadian M, Es’haghi Z, Hooshmand S. Green and chemical synthesis of zinc oxide nanoparticles and size evaluation by UV–vis spectroscopy. J Nanomed Res. 2018; 7(1). https://doi.org/10.15406/jnmr.2018.07.00175 DOI: https://doi.org/10.15406/jnmr.2018.07.00175
Mohammadi FM, Ghasemi N. Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract. J Nanostruct Chem. 2018; 8:93-102. https://doi.org/10.1007/s40097-018-0257-6 DOI: https://doi.org/10.1007/s40097-018-0257-6
Sorbiun M, Mehr ES, Ramazani A, Fardood ST. Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. Int J Environ Res. 2018; 12:29-37. https://doi.org/10.1007/s41742-018-0064-4 DOI: https://doi.org/10.1007/s41742-018-0064-4
Faisal S, Jan H, Shah SA, Shah S, Khan A, Akbar MT, et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega. 2021; 6(14):9709-22. https://doi.org/10.1021/acsomega.1c00310 PMid:33869951 PMCid: PMC8047667 DOI: https://doi.org/10.1021/acsomega.1c00310
Raut DPS, Thorat RT. Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves. Int J Sci Res. 2015; 4:1225-8.
Ali M, Wang X, Haroon U, Chaudhary HJ, Kamal A, Ali Q, et al. Antifungal activity of Zinc nitrate derived nano ZnO fungicide synthesized from Trachyspermum ammi to control fruit rot disease of grapefruit. Ecotoxicol Environ Saf. 2022; 233:113311. https://doi.org/10.1016/j.ecoenv.2022.113311 PMid:35217307 DOI: https://doi.org/10.1016/j.ecoenv.2022.113311
Rana N, Chand S, Gathania AK. Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications. Internat Nano Lett. 2016; 6(2):91-8. https://doi.org/10.1007/s40089-015-0171-6 DOI: https://doi.org/10.1007/s40089-015-0171-6
Sheba LA, Anuradha V. An updated review on Couroupita guianensis Aubl: A sacred plant of India with myriad medicinal properties. J Herbmed Pharmacol. 2019; 9(1). https://doi.org/10.15171/jhp.2020.01 DOI: https://doi.org/10.15171/jhp.2020.01
Vidhya S, Rose AL, Priya FJ, Keerthana T, Priyadharshini R. Anti-urolithiatic activity of silver nanoparticles of Terminalia chebula bark. Orient J Chem. 2021; 37:109-15. https://doi.org/10.13005/ojc/370114 DOI: https://doi.org/10.13005/ojc/370114
Kaleeswaran B, Ramadevi S, Murugesan R, Srigopalram S, Suman T, Balasubramanian T. Evaluation of anti-urolithiatic potential of ethyl acetate extract of Pedalium murex L. on struvite crystal (kidney stone). J Tradit Compl Med. 2019; 9(1):24-37. https://doi.org/10.1016/j.jtcme.2017.08.003 PMid:30671363 PMCid:PMC6335495 DOI: https://doi.org/10.1016/j.jtcme.2017.08.003