The Role of Curcumin in Gastric Carcinoma by Modulating the Immune System and its SAR

Jump To References Section

Authors

  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida – 201306, Uttar Pradesh ,IN
  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida – 201306, Uttar Pradesh ,IN
  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida – 201306, Uttar Pradesh ,IN
  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida – 201306, Uttar Pradesh ,IN
  • Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida – 201306, Uttar Pradesh ,IN
  • Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida – 201306, Uttar Pradesh ,IN
  • Lovely Professional University, Jalandhar - Delhi, Grand Trunk Rd, Phagwara – 144001, Punjab ,IN

DOI:

https://doi.org/10.18311/jnr/2024/34910

Keywords:

Curcumin, Immune-Modulation, Gastric Carcinoma, Structure-activity Relationship, Signalling Pathways

Abstract

The second most prevalent cancer in the world and the fifth most common malignant tumour is gastric carcinoma. It is thought that several factors, including genetics, epigenetics, and environmental impacts, contribute to the development of gastric cancer. One of the main pathogenic variables associated with stomach cancer risk has been identified as inflammation. There are currently few methods to treat the gastric carcinoma. Therefore, an alternative plan is urgently needed. Explaining the importance of curcumin derived from Curcuma longa Linn. in stomach cancer is the goal of this review. According to recent research, Curcumin (CUR) has a great effect against stomach mucosal injury brought on by non-steroidal anti-inflammatory medicines, gastric mucosal injury in rats, stress haemorrhage, and Helicobacter pylori infection. In this review article, we have discussed the chemistry of CUR, the role of CUR in immunomodulation, and gastric cancer. We have also highlighted the various signalling pathway of gastric cancer where CUR work. By controlling miRNAs on gastric cancer and other relevant signal pathways, CUR exhibits notable anti-inflammatory and anti-cancer properties. In future there are more research work will be done on CUR.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-01-01

How to Cite

Kumar, A., Majee, C., Mazumder, R., Sharma, R., Mazumder, A., Mishra, R., & Wadhwa, P. (2024). The Role of Curcumin in Gastric Carcinoma by Modulating the Immune System and its SAR. Journal of Natural Remedies, 24(1), 59–70. https://doi.org/10.18311/jnr/2024/34910

Issue

Section

Short Review
Received 2023-08-31
Accepted 2023-09-20
Published 2024-01-01

 

References

Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016; 388(10060):2654-64. https://doi.org/10.1016/S0140-6736(16)30354-3 PMID 27156933 DOI: https://doi.org/10.1016/S0140-6736(16)30354-3

Tarazona N, Gambardella V, Huerta M, Roselló S, Cervantes A. Personalised treatment in gastric cancer: Myth or reality? Current Oncology Reports. 2016; 18(7):41. https://doi.org/10.1007/s11912-016-0525-x PMID 27215435 DOI: https://doi.org/10.1007/s11912-016-0525-x

Savouret JF, Quesne M. Resveratrol and cancer: A review. Biomedicine and Pharmacotherapy. 2002; 56(2):84-7. https://doi.org/10.1016/S0753-3322(01)00158-5 PMID 12000139 DOI: https://doi.org/10.1016/S0753-3322(01)00158-5

Sunkata R, Herring J, Walker LT, Verghese M. Chemopreventive potential of probiotics and prebiotics. Food Science and Nutrition. 2014; 05(18):1800-9. https://doi.org/10.4236/fns.2014.518194 DOI: https://doi.org/10.4236/fns.2014.518194

Zanini S, Marzotto M, Giovinazzo F, Bassi C, Bellavite P. Effects of dietary components on cancer of the digestive system. Critical Reviews in Food Science and Nutrition. 2015; 55(13):1870-85. https://doi.org/10.1080/10408398.2012.732126 PMID 24841279 DOI: https://doi.org/10.1080/10408398.2012.732126

Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: Review of the gap between basic and clinical applications. Current Medicinal Chemistry. 2010; 17(3):190-7. https://doi.org/10.2174/092986710790149738 PMID 20214562 DOI: https://doi.org/10.2174/092986710790149738

Chauhan DP. Chemotherapeutic potential of curcumin for colorectal cancer. Current Pharmaceutical Design. 2002; 8(19):1695-706. https://doi.org/10.2174/1381612023394016 PMid:12171541

Shishu GN, Gupta N, Aggarwal N. Bioavailability enhancement and targeting of stomach tumors using gastro-retentive floating drug delivery system of curcumin-a technical note. AAPS Pharm Sci Tech. 2008; 9(3):810-3. https://doi.org/10.1208/s12249-008-9096-y PMid:18600460 PMCid:PMC2977012 DOI: https://doi.org/10.1208/s12249-008-9096-y

Wang TY, Chen JX. Effects of curcumin on vessel formation insight into the pro-and antiangiogenesis of curcumin. Evidence-Based Complementary and Alternative Medicine. 2019. https://doi.org/10.1155/2019/1390795. PMid:31320911 PMCid:PMC6607718 DOI: https://doi.org/10.1155/2019/1390795

Barati N, Momtazi‐Borojeni AA, Majeed M, Sahebkar A. Potential therapeutic effects of curcumin in gastric cancer. Journal of Cellular Physiology. 2019; 234(3):2317-28. https://doi.org/10.1002/jcp.27229. PMid:30191991 DOI: https://doi.org/10.1002/jcp.27229

Liang T, Zhang X, Xue W, Zhao S, Zhang X, Pei J. Curcumin induced human gastric cancer BGC-823 cells apoptosis by ROS-mediated ASK1-MKK4-JNK stress signaling pathway. International Journal of Molecular Sciences. 2014; 15(9):15754-65. https://doi.org/10.3390/ijms150915754 PMid:25198898 PMCid:PMC4200840 DOI: https://doi.org/10.3390/ijms150915754

Sa G, Das T. Anti cancer effects of curcumin: Cycle of life and death. Cell Division. 2008; 3:14. https://doi.org/10.1186/1747-1028-3-14 PMid:18834508 PMCid:PMC2572158 DOI: https://doi.org/10.1186/1747-1028-3-14

Cao X, Li Y, Wang Y, Yu T, Zhu C, Zhang X, et al. Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLOS One. 2022; 17(1). https://doi.org/10.1371/journal.pone.0261370 PMid:35041678 PMCid:PMC8765616 DOI: https://doi.org/10.1371/journal.pone.0261370

Qiu P, Zhang S, Zhou Y, Zhu M, Kang Y, Chen D, et al. Synthesis and evaluation of asymmetric curcuminoid analogs as potential anticancer agents that downregulate NF-κB activation and enhance the sensitivity of gastric cancer cell lines to irinotecan chemotherapy. European Journal of Medicinal Chemistry. 2017; 139:917-25. https://doi.org/10.1016/j.ejmech.2017.08.022 PMid:28881286 DOI: https://doi.org/10.1016/j.ejmech.2017.08.022

Wei Y, Yang P, Cao S, Zhao L. The combination of curcumin and 5-fluorouracil in cancer therapy. Archives of Pharmacal Research. 2018; 41(1):1-13. https://doi.org/10.1007/s12272-017-0979-x. PMid:29230689 DOI: https://doi.org/10.1007/s12272-017-0979-x

Vinod BS, Antony J, Nair HH, Puliyappadamba VT, Saikia M, Narayanan SS, et al. Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil. Cell Death and Disease. 2013; 4(2). https://doi.org/10.1038/cddis.2013.26 PMid:23429291 PMCid:PMC3734809 DOI: https://doi.org/10.1038/cddis.2013.26

Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS Journal. 2013; 15(1):195-218. https://doi.org/10.1208/s12248-012-9432-8 PMid:23143785 PMCid:PMC3535097 DOI: https://doi.org/10.1208/s12248-012-9432-8

Arciero JC, Jackson TL, Kirschner DE. A mathematical model of tumor-immune evasion and siRNA treatment. Discrete and Continuous Dynamical Systems - B. 2004; 4(1):39-58. https://doi.org/10.3934/dcdsb.2004.4.39 DOI: https://doi.org/10.3934/dcdsb.2004.4.39

Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. Journal of Controlled Release. 2013; 168(2):179-99. https://doi.org/10.1016/j.jconrel.2013.03.010 PMid:23524187 DOI: https://doi.org/10.1016/j.jconrel.2013.03.010

Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and prevention of pancreatic cancer. Trends Cancer. 2018; 4(6):418-28. https://doi.org/10.1016/j.trecan.2018.04.001 PMid:29860986 PMCid:PMC6028935 DOI: https://doi.org/10.1016/j.trecan.2018.04.001

Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. Journal of Experimental Medicine. 2010; 207(11):2439-53. https://doi.org/10.1084/jem.20100587 PMid: 20876310 PMCid:PMC2964584 DOI: https://doi.org/10.1084/jem.20100587

Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Cancer Biology. 2012; 22(4):327-334. https://doi.org/10.1016/j.semcancer.2012.03.004 PMid: 22465232 PMCid:PMC3385925 DOI: https://doi.org/10.1016/j.semcancer.2012.03.004

Di Sotto A, Vitalone A, Di Giacomo S. Plant-derived nutraceuticals and immune system modulation: an evidence-based overview. Vaccines. 2020; 8(3):468. https://doi.org/10.3390/vaccines8030468 PMid:32842641 PMCid:PMC7563161 DOI: https://doi.org/10.3390/vaccines8030468

Andersen MH, Schrama D, thor Straten P, Becker JC. Cytotoxic T cells. Journal of Investigative Dermatology. 2006; 126(1):32-41. https://doi.org/10.1038/sj.jid.5700001 PMid:16417215 DOI: https://doi.org/10.1038/sj.jid.5700001

Du Y, Wei Y. Therapeutic potential of natural killer cells in gastric cancer. Frontiers in Immunology. 2018; 9. https://doi.org/10.3389/fimmu.2018.03095 PMid:30719024 PMCid:PMC6348255 DOI: https://doi.org/10.3389/fimmu.2018.03095

Macrì A, Versaci A, Loddo S, Scuderi G, Travagliante M, Trimarchi G, et al. Serum levels of interleukin 1β, interleukin 8 and tumour necrosis factor α as markers of gastric cancer. Biomarkers. 2006; 11(2):184-93. https://doi.org/10.1080/13547500600565677 PMid:16766394 DOI: https://doi.org/10.1080/13547500600565677

Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBPP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy Research. 2018; 32(12):2323-39. https://doi.org/10.1002/ptr.6178 PMid:30117204 PMCid:PMC7167772 DOI: https://doi.org/10.1002/ptr.6178

Nazhand A, Durazzo A, Lucarini M, Silva AM, Souto SB, Severino P, et al. Uncaria tomentosa (Willd. ex Schult.): Focus on Nutraceutical Aspects. Current Bioactive Compounds. 2022; 18(4):2-10. https://doi.org/10.2174/1573407217666210903113347 DOI: https://doi.org/10.2174/1573407217666210903113347

Naveed M, BiBi J, Kamboh AA, Suheryani I, Kakar I, Fazlani SA, et al. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview. Biomedicine and Pharmacotherapy. 2018; 100:521-31. https://doi.org/10.1016/j.biopha.2018.02.048 PMid:29482046 DOI: https://doi.org/10.1016/j.biopha.2018.02.048

Cai JP, Wu YJ, Li C, Feng MY, Shi QT, Li R, et al. Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer. International Journal of Biological Macromolecules. 2013; 57:22-5. https://doi.org/10.1016/j.ijbiomac.2013.03.010 PMid:23500436 DOI: https://doi.org/10.1016/j.ijbiomac.2013.03.010

Mohammad NS, Ali AH, Salah LD. Prunus armeniaca Seeds extract inhibits cell proliferation and enhances cell death in cancer cells. Journal of Survey in Fisheries Sciences. 2023; 10(1S):4178-95.

Lau BHS, Tadi PP, Tosk JM. Allium sativum (garlic) and cancer prevention. Nutrition Research. 1990; 10(8):937-48. https://doi.org/10.1016/S0271-5317(05)80057-0 DOI: https://doi.org/10.1016/S0271-5317(05)80057-0

Ming DS, Guns E, Eberding A, Towers GH. Isolation and characterization of compounds with anti-prostate cancer activity from Arctium lappa L. using bioactivity-guided fractionation. Pharmaceutical Biology. 2004; 42(1):44-8. https://doi.org/10.1080/13880200490505474 DOI: https://doi.org/10.1080/13880200490505474

Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, et al. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A review. Biomedicine and Pharmacotherapy. 2021; 135. https://doi.org/10.1016/j.biopha.2020.111078 PMid:33433356 DOI: https://doi.org/10.1016/j.biopha.2020.111078

Hwang JW, Cho H, Lee JY, Jeon Y, Kim SN, Lee SJ, et al. The synthetic ajoene analog SPA3015 induces apoptotic cell death through crosstalk between NF-κB and PPARγ in multidrug-resistant cancer cells. Food and Chemical Toxicology. 2016; 96:35-42. https://doi.org/10.1016/j.fct.2016.07.020 PMid:27449564 DOI: https://doi.org/10.1016/j.fct.2016.07.020

He Y, Fan Q, Cai T, Huang W, Xie X, Wen Y, et al. Molecular mechanisms of the action of arctigenin in cancer. Biomed Pharmacother. 2018; 108:403-7. https://doi.org/10.1016/j.biopha.2018.08.158 PMid:30236849 DOI: https://doi.org/10.1016/j.biopha.2018.08.158

Van Poppel G, Goldbohm RA. Epidemiologic evidence for beta-carotene and cancer prevention. American Journal of Clinical Nutrition. 1995; 62(6):1393S-402S. https://doi.org/10.1093/ajcn/62.6.1393S PMid:7495237 DOI: https://doi.org/10.1093/ajcn/62.6.1393S

Wargovich MJ. Colon cancer chemoprevention with ginseng and other botanicals. Journal of Korean Medical Science. 2001; 16:S81-6. https://doi.org/10.3346/jkms.2001.16.S.S81 PMid:11748382 PMCid:PMC3202201 DOI: https://doi.org/10.3346/jkms.2001.16.S.S81

Lecumberri E, Dupertuis YM, Miralbell R, Pichard C. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clinical Nutrition. 2013; 32(6):894-903. https://doi.org/10.1016/j.clnu.2013.03.008 PMid:23582951 DOI: https://doi.org/10.1016/j.clnu.2013.03.008

Jiang F, Li Y, Mu J, Hu C, Zhou M, Wang X, et al. Glabridin inhibits cancer stem cell‐like properties of human breast cancer cells: An epigenetic regulation of miR‐148a/SMAd2 signaling. Molecular Carcinogenesis. 2016; 55(5):929-40. https://doi.org/10.1002/mc.22333 PMid:25980823 DOI: https://doi.org/10.1002/mc.22333

Baraya YU, Wong KK, Yaacob NS. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: A review. Anticancer agents in medicinal chemistry (formerly current medicinal chemistry-anticancer agents). 2017; 17(6):770-83. https://doi.org/10.2174/1871520616666160817111242 PMid:27539316 DOI: https://doi.org/10.2174/1871520616666160817111242

Mošovská S, Petáková P, Kaliňák M, Mikulajová A. Antioxidant properties of curcuminoids isolated from Curcuma longa L. Acta Chimica Slovenica. 2016; 9(2):130-5. https://doi.org/10.1515/acs-2016-0022 DOI: https://doi.org/10.1515/acs-2016-0022

Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007; 28(8):1765-73. https://doi.org/10.1093/carcin/bgm123 PMid:17522064 DOI: https://doi.org/10.1093/carcin/bgm123

Verma S, Singh S, Sharma S, Tewari SK, Roy RK, Goel AK, et al. Assessment of genetic diversity in indigenous turmeric (Curcuma longa) germplasm from India using molecular markers. Physiology and Molecular Biology of Plants. 2015; 21(2):233-42. https://doi.org/10.1007/s12298-015-0286-2 PMid:25964716 PMCid:PMC4411392 DOI: https://doi.org/10.1007/s12298-015-0286-2

Yadav RP, Tarun G. Versatility of turmeric: A review the golden spice of life. Journal of Pharmacognosy and Phytochemistry. 2017; 6(1):41-6.

Ahmad RS, Hussain MB, Sultan MT, Arshad MS, Waheed M, Shariati MA, et al. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: A mechanistic review. Evidence-Based Complementary and Alternative Medicine. 2020; 2020. https://doi.org/10.1155/2020/7656919 PMid:32454872 PMCid:PMC7238329 DOI: https://doi.org/10.1155/2020/7656919

Rathaur P, Raja W, Ramteke PW, John SA. Turmeric: The golden spice of life. International Journal of Pharmaceutical Sciences and Research. 2012: 3(7):1987.

Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives-A review. Journal of Traditional and Complementary Medicine. 2017; 7(2):205-33. https://doi.org/10.1016/j.jtcme.2016.05.005 PMid:28417091 PMCid: PMC5388087 DOI: https://doi.org/10.1016/j.jtcme.2016.05.005

Jackson CL, Menke AE. On certain substances obtained from turmeric. American Academy of Arts and Sciences. 1883; 19. https://doi.org/10.2307/25138726 DOI: https://doi.org/10.2307/25138726

de Souza Ferreira SB, Bruschi ML. Improving the bioavailability of curcumin: is micro/nanoencapsulation the key? Therapeutic Delivery. 2019; 10(2):83-6. https://doi.org/10.4155/tde-2018-0075 PMid:30729886 DOI: https://doi.org/10.4155/tde-2018-0075

Olivier R. Turmeric, a long-standing dietary component with an unprecedented range of benefits. Inflammation. 2017; 31:32.

Ahmed T, Gilani AH. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacology Biochemistry and Behavior. 2009; 91(4):554-9. https://doi.org/10.1016/j.pbb.2008.09.010 PMid:18930076 DOI: https://doi.org/10.1016/j.pbb.2008.09.010

Pei H, Yang Y, Cui L, Yang J, Li X, Yang Y, Duan H. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Scientific Reports. 2016; 6(1). https://doi.org/10.1038/srep28773 PMid:27349797 PMCid:PMC4923879 DOI: https://doi.org/10.1038/srep28773

Ponnusamy S, Zinjarde S, Bhargava S, Rajamohanan PR, RaviKumar A. Discovering Bisdemethoxycurcumin from Curcuma longa rhizome as a potent small molecule inhibitor of human pancreatic α-amylase, a target for type-2 diabetes. Food Chemistry. 2012; 135(4):2638-42. https://doi.org/10.1016/j.foodchem.2012.06.110 PMid:22980852 DOI: https://doi.org/10.1016/j.foodchem.2012.06.110

Murakami Y, Ishii H, Takada N, Tanaka S, Machino M, Ito S, Fujisawa S. Comparative anti-inflammatory activities of curcumin and tetrahydrocurcumin based on the phenolic OH bond dissociation enthalpy, ionization potential and quantum chemical descriptor. Anticancer Research. 2008; 28(2A):699-707.

Xu G, Wei D, Wang J, Jiang B, Wang M, Xue X, Zhou S, Wu B, Jiang M. Crystal structure, optical properties and biological imaging of two curcumin derivatives. Dyes and Pigments. 2014; 101:312-7. https://doi.org/10.1016/j.dyepig.2013.09.034 DOI: https://doi.org/10.1016/j.dyepig.2013.09.034

Tan S, Calani L, Bresciani L, Dall’asta M, Faccini A, Augustin MA, Gras SL, Del Rio D. The degradation of curcuminoids in a human faecal fermentation model. International Journal of Food Sciences and Nutrition. 2015; 66(7):790-6. https://doi.org/10.3109/09637486.2015.1095865 PMid:26471074 DOI: https://doi.org/10.3109/09637486.2015.1095865

Revathy S, Elumalai S, Antony MB. Isolation, purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. Journal of Experimental Sciences. 2011; 2(7).

Maiti P, Manna J, Thammathong J, Evans B, Dubey KD, Banerjee S, Dunbar GL. Tetrahydrocurcumin has similar anti-amyloid properties as curcumin: In vitro comparative structure-activity studies. Antioxidants. 2021; 10(10):1592. https://doi.org/10.3390/antiox10101592 PMid:34679727 PMCid:PMC8533373 DOI: https://doi.org/10.3390/antiox10101592

Priyadarsini KI. The chemistry of curcumin: From extraction to therapeutic agent. Molecules. 2014; 19(12):20091-112. https://doi.org/10.3390/molecules191220091 PMid:25470276 PMCid:PMC6270789 DOI: https://doi.org/10.3390/molecules191220091

Noureddin SA, El-Shishtawy RM, Al-Footy KO. Curcumin analogues and their hybrid molecules as multifunctional drugs. European Journal of Medicinal Chemistry. 2019; 182. https://doi.org/10.1016/j.ejmech.2019.111631 PMid:31479974 DOI: https://doi.org/10.1016/j.ejmech.2019.111631

Shi Q, Shih CY, Lee KH. Novel antiprostate cancer curcumin analogues that enhance androgen receptor degradation activity. Anticancer agents in medicinal chemistry (formerly current medicinal chemistry-anticancer agents). 2009; 9(8):904-12. https://doi.org/10.2174/187152009789124655 PMid:19663790 DOI: https://doi.org/10.2174/187152009789124655

Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. International Journal of Molecular Sciences. 2019; 20(5). https://doi.org/10.3390/ijms20051033 PMid:30818786 PMCid:PMC6429287 DOI: https://doi.org/10.3390/ijms20051033

Vellampatti S, Chandrasekaran G, Mitta SB, Lakshmanan VK, Park SH. Metallo-curcumin-conjugated DNA complexes induces preferential prostate cancer cells cytotoxicity and pause growth of bacterial cells. Scientific Reports. 2018; 8(1) https://doi.org/10.1038/s41598-018-33369-z PMid:30297802 PMCid:PMC6175843 DOI: https://doi.org/10.1038/s41598-018-33369-z

Hatamipour M, Johnston TP, Sahebkar A. One molecule, many targets and numerous effects: the pleiotropy of curcumin lies in its chemical structure. Current Pharmaceutical Design. 2018; 24(19):2129-36 https://doi.org/10.2174/1381612824666180522111036PMid:29788873 DOI: https://doi.org/10.2174/1381612824666180522111036

Barzegar A, Moosavi-Movahedi AA. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLOS One. 2011; 6(10). https://doi.org/10.1371/journal.pone.0026012 PMid:22016801 PMCid:PMC3189944 DOI: https://doi.org/10.1371/journal.pone.0026012

Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opinion on Investigational Drugs. 2009; 18(12):1893-905. https://doi.org/10.1517/13543780903321490 PMid:19852565 DOI: https://doi.org/10.1517/13543780903321490

Kim AR, Lee MS, Shin TS, Hua H, Jang BC, Choi JS, et al. Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-κB, Akt, and p38 MAPK. Toxicology in Vitro. 2011; 25(8):1789-95. https://doi.org/10.1016/j.tiv.2011.09.012 PMid:21963823 DOI: https://doi.org/10.1016/j.tiv.2011.09.012

Lee JK, Won C, Yi EH, Seok SH, Kim MH, Kim SJ, et al. Signal transducer and activator of transcription 3 (Stat3) contributes to T‐cell homeostasis by regulating pro‐survival Bcl-2 family genes. Immunology. 2013; 140(3):288-300. https://doi.org/10.1111/imm.12133 PMid:23746113 PMCid: PMC3800434 DOI: https://doi.org/10.1111/imm.12133

Giordano A, Tommonaro G. Curcumin and cancer. Nutrients. 2019; 11(10). https://doi.org/10.3390/nu11102376 PMid:31590362 PMCid:PMC6835707 DOI: https://doi.org/10.3390/nu11102376

Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González‐Gallego J. A review of the molecular aspects of melatonin’s anti‐inflammatory actions: Recent insights and new perspectives. Journal of Pineal Research. 2013; 54(1):1-14. https://doi.org/10.1111/j.1600-079X.2012.01014.x PMid:22725668 DOI: https://doi.org/10.1111/j.1600-079X.2012.01014.x

Makarov SS. NF-κB as a therapeutic target in chronic inflammation: Recent advances. Molecular Medicine Today. 2000; 6(11):441-8. https://doi.org/10.1016/S1357-4310(00)01814-1 PMid:11074370 DOI: https://doi.org/10.1016/S1357-4310(00)01814-1

Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Archiv der Pharmazie. 2010; 343(9):489-99. https://doi.org/10.1002/ardp.200900319 PMid:20726007 DOI: https://doi.org/10.1002/ardp.200900319

Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology. 2008; 75(4):787-809. https://doi.org/10.1016/j.bcp.2007.08.016 PMid:17900536 DOI: https://doi.org/10.1016/j.bcp.2007.08.016

Hatziapostolou M, Polytarchou C, Katsoris P, Courty J, Papadimitriou E. Heparin affin regulatory peptide/ pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells. Journal of Biological Chemistry. 2006; 281(43):32217-26. https://doi.org/10.1074/jbc.M607104200 PMid:16940294 DOI: https://doi.org/10.1074/jbc.M607104200

Chauhan DP. Chemotherapeutic potential of curcumin for colorectal cancer. Current Pharmaceutical Design. 2002; 8(19):1695-706. https://doi.org/10.2174/1381612023394016 PMid:12171541 DOI: https://doi.org/10.2174/1381612023394016

Liu L, Li J, Kundu JK, Surh YJ. Piceatannol inhibits phorbol ester-induced expression of COX-2 and iNOS in HR-1 hairless mouse skin by blocking the activation of NF-κB and AP-1. Inflammation Research. 2014; 63:1013-21. https://doi.org/10.1007/s00011-014-0777-6 PMid:25374129 DOI: https://doi.org/10.1007/s00011-014-0777-6

Chen A, Xu J. Activation of PPAR{gamma} by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2005; 288:G447-G456. https://doi.org/10.1152/ajpgi.00209.2004 PMid:15486348 DOI: https://doi.org/10.1152/ajpgi.00209.2004

Bharti A C, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. Journal of Immunology. 2003; 171:3863-71. https://doi.org/10.4049/jimmunol.171.7.3863 PMid:14500688 DOI: https://doi.org/10.4049/jimmunol.171.7.3863

Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S, Therachiyil L, Mir R, Elfaki I, Mir MM. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomedicine and Pharmacotherapy. 2022; 150. https://doi.org/10.1016/j.biopha.2022.113054 PMid:35658225 DOI: https://doi.org/10.1016/j.biopha.2022.113054

Shanmugam MK, Lee JH, Chai EZ, Kanchi MM, Kar S, Arfuso F, et al. Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Seminars in Cancer Biology. 2016; 40:35-47. https://doi.org/10.1016/j.semcancer.2016.03.005 PMid:27038646 DOI: https://doi.org/10.1016/j.semcancer.2016.03.005

Hu M, Du Q, Vancurova I, Lin X, Miller EJ, Simms HH, et al. Proapoptotic effect of curcumin on human neutrophils: Activation of the p38 mitogen-activated protein kinase pathway. Critical Care Medicine. 2005; 33:2571-8.https://doi.org/10.1097/01.CCM.0000186760.20502.C7 PMid:16276182 DOI: https://doi.org/10.1097/01.CCM.0000186760.20502.C7

Boucher D, Blais V, Denault JB. Caspase-7 uses an exosite to promote poly (ADP ribose) polymerase 1 proteolysis. Proceedings of the National Academy of Sciences. 2012; 109(15):5669-74. https://doi.org/10.1073/pnas.1200934109 PMid:22451931 PMCid:PMC3326497 DOI: https://doi.org/10.1073/pnas.1200934109

Xue X, Yu JL, Sun DQ, Kong F, Qu XJ, Zou W, et al. Curcumin induces apoptosis in SGC-7901 gastric adenocarcinoma cells via regulation of mitochondrial signaling pathways. Asian Pacific Journal of Cancer Prevention. 2014; 15(9):3987-92. https://doi.org/10.7314/APJCP.2014.15.9.3987 PMid:24935585 DOI: https://doi.org/10.7314/APJCP.2014.15.9.3987

Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C. Anticancer activity of curcumin and its analogues: Preclinical and clinical studies. Cancer Investigation. 2017; 35(1):1-22. https://doi.org/10.1080/07357907.2016.1247166 PMid:27996308 DOI: https://doi.org/10.1080/07357907.2016.1247166

Bahrami AA, Ferns G. Effect of curcumin and its derivates on gastric cancer: Molecular mechanisms. Nutrition and Cancer. 2021; 73(9):1553-69. https://doi.org/10.1080/01635581.2020.1808232 PMid:32814463

Bahrami A, A Ferns G. Effect of curcumin and its derivates on gastric cancer: Molecular mechanisms. Nutrition and Cancer. 2021; 73(9):1553-69. https://doi.org/10.1080/01635581.2020.1808232 PMid:32814463 DOI: https://doi.org/10.1080/01635581.2020.1808232

Ebrahim N, El-Halim HEA, Helal OK, El-Azab NE, Badr OAM, Hassouna A, et al. Effect of bone marrow mesenchymal stem cells-derived exosomes on diabetes-induced retinal injury: Implication of Wnt/b-catenin signaling pathway. Biomedicine and Pharmacotherapy. 2022; 154. https://doi.org/10.1016/j.biopha.2022.113554 PMid:35987163 DOI: https://doi.org/10.1016/j.biopha.2022.113554

Liu S, Liu X, Lin X, Chen H. Zinc finger proteins in the war on gastric cancer: Molecular mechanism and clinical potential. Cells. 2023; 12(9). https://doi.org/10.3390/cells12091314 PMid:37174714 PMCid:PMC10177130 DOI: https://doi.org/10.3390/cells12091314

Singh S, Awasthi M, Pandey VP, Dwivedi UN. Natural products as anticancerous therapeutic molecules with special reference to enzymatic targets topoisomerase, COX, LOX and aromatase. Current Protein and Peptide Science. 2018; 19(3):238-74. https://doi.org/10.2174/1389203718666170106102223 DOI: https://doi.org/10.2174/1389203718666170106102223

Han X, Xu B, Beevers CS, Odaka Y, Chen L, Liu L, et al. Curcumin inhibits protein phosphatases 2A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Carcinogenesis. 2012; 33(4):868-75. https://doi.org/10.1093/carcin/bgs029 PMid:22298641 PMCid: PMC3324444 DOI: https://doi.org/10.1093/carcin/bgs029

Hassanalilou T, Ghavamzadeh S, Khalili L. Curcumin and gastric cancer: A review on mechanisms of action. Journal of Gastrointestinal Cancer. 2019; 50(2):185-92. https://doi.org/10.1007/s12029-018-00186-6 PMid:30725357 DOI: https://doi.org/10.1007/s12029-018-00186-6

Bordoloi D, Roy KN, Monisha J, Padmavathi G, Kunnumakkara AB. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far. Recent patents on anti-cancer drug discovery. 2016; 11(1):67-97. https://doi.org/10.2174/1574892810666151020101706 PMid:26537958 DOI: https://doi.org/10.2174/1574892810666151020101706

Du B, Jiang L, Xia Q, Zhong L. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy. 2006; 52(1):23-8. https://doi.org/10.1159/000090238 PMid:16340194 DOI: https://doi.org/10.1159/000090238

Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, et al. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomedicine and Pharmacotherapy. 2021; 141. https://doi.org/10.1016/j.biopha.2021.111849 PMid:34214729 DOI: https://doi.org/10.1016/j.biopha.2021.111849

Cao S, Wang C, Yan J, Li X, Wen J, Hu C. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radical Biology and Medicine. 2020; 147:8-22. https://doi.org/10.1016/j.freeradbiomed.2019.12.004 PMid:31816386 DOI: https://doi.org/10.1016/j.freeradbiomed.2019.12.004

Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. Journal of Experimental and Clinical Cancer Research. 2014; 33(1):106. https://doi.org/10.1186/s13046-014-0106-5 PMid:25519934 PMCid:PMC4320640 DOI: https://doi.org/10.1186/s13046-014-0106-5

Nicco C, Laurent A, Chereau C, Weill B, Batteux F. Differential modulation of normal and tumor cell proliferation by reactive oxygen species. Biomedicine and Pharmacotherapy. 2005; 59(4):169-74. https://doi.org/10.1016/j.biopha.2005.03.009 PMid:15862711 DOI: https://doi.org/10.1016/j.biopha.2005.03.009

Selvam R, Subramanian L, Gayathri R, Angayarkanni N. The anti-oxidant activity of turmeric (Curcuma longa). Journal of Ethnopharmacology. 1995; 47(2):59-67. https://doi.org/10.1016/0378-8741(95)01250-H PMid:7500637 DOI: https://doi.org/10.1016/0378-8741(95)01250-H

Qiang Z, Meng L, Yi C, Yu L, Chen W, Sha W. Curcumin regulates the miR-21/PTEN/Akt pathway and acts in synergy with PD98059 to induce apoptosis of human gastric cancer MGC-803 cells. Journal of International Medical Research. 2019; 47(3):1288-97. https://doi.org/10.1177/0300060518822213 PMid:30727807 PMCid: PMC6421392 DOI: https://doi.org/10.1177/0300060518822213

Carballo GB, Honorato JR, de Lopes GPF, Spohr TCLSE. A highlight on Sonic hedgehog pathway. Cell Communication and Signaling. 2018; 16(1):11. https://doi.org/10.1186/s12964-018-0220-7 PMid:29558958 PMCid:PMC5861627 DOI: https://doi.org/10.1186/s12964-018-0220-7

Zhang X, Zhang C, Ren Z, Zhang F, Xu J, Zhang X, et al. Curcumin affects gastric cancer cell migration, invasion and cytoskeletal remodeling through gli1-β-catenin. Cancer Management and Research. 2020; 12:3795-806. https://doi.org/10.2147/CMAR.S244384 PMid:32547215 PMCid: PMC7247599 DOI: https://doi.org/10.2147/CMAR.S244384

Fan L, Pepicelli CV, Dibble CC, Catbagan W, Zarycki JL, Laciak R, et al. Hedgehog signalling promotes prostate xenograft tumor growth. Endocrinology. 2004; 145(8):3961-70. https://doi.org/10.1210/en.2004-0079 PMid:15132968 DOI: https://doi.org/10.1210/en.2004-0079

Ma X, Chen K, Huang S, Zhang X, Adegboyega PA, Evers BM, et al. Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas. Carcinogenesis. 2005; 26(10):1698-705. https://doi.org/10.1093/carcin/bgi130 PMid:15905200 DOI: https://doi.org/10.1093/carcin/bgi130

Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, et al. Molecular and cellular paradigms of multidrug resistance in cancer. Current Cancer Reports (Hoboken). 2022; 5(12). https://doi.org/10.1002/cnr2.1291 PMid:33052041 PMCid:PMC9780431 DOI: https://doi.org/10.1002/cnr2.1291

Most read articles by the same author(s)

<< < 1 2