Exploring the Antiviral Potential of Polyphenols against Re-emerging and Emerging Viral Infections: A Comprehensive Review

Jump To References Section

Authors

  • Virology and Vaccine Institute of the Philippines Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig – 1634 ,PH
  • Institute of Biological Sciences, College of Arts and Sciences, Central Mindanao University, Musuan, Maramag, Bukidnon – 8714 ,PH

DOI:

https://doi.org/10.18311/jnr/2024/35273

Keywords:

Antiviral Activity, Drug Discovery, Polyphenols, Viral Diseases

Abstract

The emergence and re-emergence of viral diseases pose significant challenges to global public health. Polyphenols have emerged as promising candidates in the search for effective antiviral strategies because of their diverse biological activities and natural abundance. This comprehensive review aims to provide a detailed analysis of the antiviral potential of polyphenols against a spectrum of viral pathogens. The molecular mechanisms underlying the antiviral activity of polyphenols against coronaviruses, herpesviruses, hepatitis viruses, influenza viruses and noroviruses were thoroughly discussed. Several insights into their general characteristics, extraction methods and general health benefits were also provided. This was followed by an examination of the efficacy of polyphenols as antiviral agents in animal studies and clinical trials. Finally, the promising use of biocompatible nanocarriers was explored to enhance the bioactivity and bioavailability of polyphenols. Despite the progress made in understanding the antiviral activities of polyphenols, several research gaps warrant further investigation. Overall, this knowledge can guide future research and development efforts toward the utilisation of polyphenols as effective therapeutics against a broad range of viral pathogens.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-07-31

How to Cite

Orosco, F. L., & Dapar, M. L. G. (2024). Exploring the Antiviral Potential of Polyphenols against Re-emerging and Emerging Viral Infections: A Comprehensive Review. Journal of Natural Remedies, 24(7), 1403–1424. https://doi.org/10.18311/jnr/2024/35273

Issue

Section

Review Articles
Received 2023-10-05
Accepted 2024-05-10
Published 2024-07-31

 

References

Ryu WS. Virus life cycle. Mol Virol Hum Pathog Viruses. 2017. p. 31-45. https://doi.org/10.1016/B978-0-12-800838-6.00003-5 PMCid: PMC7158286.

Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, et al. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother. 2018; 26:2040206618811413. https://doi.org/10.1177/2040206618811413 PMid:30449131 PMCid: PMC6243413.

Hamed I, Özogul F, Özogul Y, Regenstein JM. Marine bioactive compounds and their health benefits: A review. Compr Rev Food Sci Food Saf. 2015; 14(4):446-65. https://doi.org/10.1111/1541-4337.12136

Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am. 2010; 24(2):413-37. https://doi.org/10.1016/j.idc.2010.01.001 PMid:20466277 PMCid: PMC2871161.

Irwin KK, Renzette N, Kowalik TF, Jensen JD. Antiviral drug resistance as an adaptive process. Virus Evol. 2016; 2(1):vew014. https://doi.org/10.1093/ve/vew014 PMid:28694997 PMCid: PMC5499642.

Pedrosa R, Gaudêncio SP, Vasconcelos V. XVI International symposium on marine natural products|XI European conference on marine natural products. Mar Drugs. 2020; 18(1):40. https://doi.org/10.3390/md18010040 PMid:31935809 PMCid: PMC7024214.

Poole J, Diop A, Rainville LC, Barnabé S. Bioextracting polyphenols from the brown seaweed Ascophyllum nodosum from Québec's north shore coastline. Ind Biotechnol. 2019; 15(3):212-8. https://doi.org/10.1089/ind.2019.0008

Heffernan N, Smyth TJ, Soler-Villa A, Fitzgerald RJ, Brunton NP. Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). J Appl Phycol. 2015; 27(1):519-30. https://doi.org/10.1007/s10811-014-0291-9

Gupta S, Abu-Ghannam N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol. 2011; 12(4):600-9. https://doi.org/10.1016/j.ifset.2011.07.004

Galanakis CM. Polyphenols: properties, recovery and applications. Woodhead Publishing. 2018. p. 458.

Mahedi MRA, Rawat A, Rabbi F, Babu KS, Tasayco ES, Areche FO, et al. Understanding the global transmission and demographic distribution of Nipah Virus (NiV). Res J Pharm Technol. 2023; 16(8):3588-94. https://doi.org/10.52711/0974-360X.2023.00592

Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Valderrama C, Granados M, et al. Polyphenols and their potential role to fight viral diseases: An overview. Sci Total Environ. 2021; 801:149719. https://doi.org/10.1016/j.scitotenv.2021.149719 PMid:34438146 PMCid: PMC8373592.

Zhang L, McClements DJ, Wei Z, Wang G, Liu X, Liu F. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Crit Rev Food Sci Nutr. 2020; 60(12):2083-97. https://doi.org/10.1080/10408398.2019.1630358 PMid:31257900.

Long F, Yang H, Xu Y, Hao H, Li P. A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Sci Rep. 2015; 5(1):12361. https://doi.org/10.1038/srep12361 PMid:26198093 PMCid: PMC4510521.

Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frígola Ana. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr Rev Food Sci Food Saf. 2014; 13(2):155-71. https://doi.org/10.1111/1541-4337.12049 PMid:33412647.

Kumar N, Goel N. Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep. 2019; 24:e00370. https://doi.org/10.1016/j.btre.2019.e00370 PMid:31516850 PMCid: PMC6734135.

Liang J, Yan H, Wang X, Zhou Y, Gao X, Puligundla P, et al. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem. 2017; 231:19-24. https://doi.org/10.1016/j.foodchem.2017.02.106 PMid:28449996.

Xue J, Zhang Y, Huang G, Liu J, Slavin M, Yu L (Lucy). Zein-caseinate composite nanoparticles for bioactive delivery using curcumin as a probe compound. Food Hydrocoll. 2018; 83:25-35. https://doi.org/10.1016/j.foodhyd.2018.04.037

Dzah CS, Duan Y, Zhang H, Wen C, Zhang J, Chen G, et al. The effects of ultrasound-assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020; 35:100547. https://doi.org/10.1016/j.fbio.2020.100547

Bottino A, Capannelli G, Comite A, Costa C, Firpo R, Jezowska A, et al. Treatment of olive mill wastewater through integrated pressure-driven membrane processes. Membranes. 2020; 10(11):334. https://doi.org/10.3390/membranes10110334 PMid:33187114 PMCid: PMC7697980.

Edziri H, Mastouri M, Aouni M, Verschaeve L. Polyphenols content, antioxidant and antiviral activities of leaf extracts of Marrubium deserti growing in Tunisia. South Afr J Bot. 2012; 80:104-9. https://doi.org/10.1016/j.sajb.2012.03.001

Zahoor M, Shah AB, Naz S, Ullah R, Bari A, Mahmood HM. Isolation of Quercetin from Rubus fruticosus, Their concentration through NF/RO membranes and recovery through carbon nanocomposite. A pilot plant study. BioMed Res Int. 2020; 2020:e8216435. https://doi.org/10.1155/2020/8216435 PMid:32258148 PMCid: PMC7109554.

Forman HJ, Davies KJA, Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med. 2014; 66:24-35. https://doi.org/10.1016/j.freeradbiomed.2013.05.045 PMid:23747930 PMCid: PMC3852196.

Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signalling: (-)-Epicatechin as a paradigm. Mol Aspects Med. 2018; 61:31-40. https://doi.org/10.1016/j.mam.2018.01.007 PMid:29421170.

Bondonno NP, Bondonno CP, Blekkenhorst LC, Considine MJ, Maghzal G, Stocker R, et al. Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: A randomized controlled clinical trial. Mol Nutr Food Res. 2018; 62(3):1700674. https://doi.org/10.1002/mnfr.201700674 PMid:29086478.

Oteiza PI, Fraga CG, Mills DA, Taft DH. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol Aspects Med. 2018; 61:41-9. https://doi.org/10.1016/j.mam.2018.01.001 PMid:29317252.

Tresserra-Rimbau A, Rimm EB, Medina-Remón A, Martínez-González MA, López-Sabater MC, Covas MI, et al. Polyphenol intake and mortality risk: A re-analysis of the PREDIMED trial. BMC Med. 2014; 12:77. https://doi. org/10.1186/1741-7015-12-77 PMid:24886552 PMCid: PMC4102266.

Tresserra-Rimbau A, Rimm EB, Medina-Remón A, Martínez-González MA, Torre R de la, Corella D, et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis. 2014; 24(6):639-47. https://doi.org/10.1016/j.numecd.2013.12.014 PMid:24552647.

G. Fraga C, D. Croft K, O. Kennedy D, A. Tomás-Barberán F. The effects of polyphenols and other bioactives on human health. Food Funct. 2019; 10(2):514-28. https://doi.org/10.1039/C8FO01997E PMid:30746536.

Kesse-Guyot E, Fezeu L, Andreeva VA, Touvier M, Scalbert A, Hercberg S, et al. Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr. 2012; 142(1):76-83. https://doi. org/10.3945/jn.111.144428 PMid:22090468.

Crichton GE, Elias MF, Alkerwi A. Chocolate intake is associated with better cognitive function: The Maine-Syracuse longitudinal study. Appetite. 2016; 100:126-32. https://doi.org/10.1016/j.appet.2016.02.010 PMid:26873453.

Shen L, Song L Guang, Ma H, Jin C Na, Wang J An, Xiang M Xiang. Tea consumption and risk of stroke: A dose-response meta-analysis of prospective studies. J Zhejiang Univ Sci B. 2012; 13(8):652-62. https://doi.org/10.1631/jzus.B1201001 PMid:22843186 PMCid: PMC3411099.

Ng TP, Feng L, Niti M, Kua EH, Yap KB. Tea consumption and cognitive impairment and decline in older Chinese adults. Am J Clin Nutr. 2008; 88(1):224-31. https://doi.org/10.1093/ajcn/88.1.224 PMid:18614745.

Dong X, Yang C, Cao S, Gan Y, Sun H, Gong Y, et al. Tea consumption and the risk of depression: A meta-analysis of observational studies. Aust N Z J Psychiatry. 2015; 49(4):334-45. https://doi.org/10.1177/0004867414567759 PMid:25657295.

Li FJ, Ji HF, Shen L. A meta-analysis of tea drinking and risk of Parkinson's disease. Sci World J. 2012; 2012:923464. https://doi.org/10.1100/2012/923464 PMid:22448141 PMCid: PMC3289976.

Kandeil A, Mostafa A, Kutkat O, Moatasim Y, Al-Karmalawy AA, Rashad AA, et al. Bioactive polyphenolic compounds showing strong antiviral activities against severe acute respiratory syndrome coronavirus 2. Pathogens. 2021; 10(6):758. https://doi.org/10.3390/pathogens10060758 PMid:34203977 PMCid: PMC8232731.

Zhang T, Lo CY, Xiao M, Cheng L, Pun Mok CK, Shaw PC. Anti-influenza virus phytochemicals from Radix paeoniae Alba and characterisation of their neuraminidase inhibitory activities. J Ethnopharmacol. 2020; 253:112671. https://doi. org/10.1016/j.jep.2020.112671 PMid:32081739.

Choi JG, Lee H, Kim YS, Hwang YH, Oh YC, Lee B, et al. Aloe vera and its components inhibit Influenza: A virus-induced autophagy and replication. Am J Chin Med. 2019; 47(6):1307-24. https://doi.org/10.1142/ S0192415X19500678 PMid:31505936

Chojnacka K, Skrzypczak D, Izydorczyk G, Mikula K, Szopa D, Witek-Krowiak A. Antiviral properties of polyphenols from plants. Foods. 2021; 10(10):2277. https:// doi.org/10.3390/foods10102277 PMid:34681326 PMCid: PMC8534698.

Li Y, Yang D, Jia Y, He L, Li J, Yu C, et al. Research note: Antiinflammatory effects and antiviral activities of baicalein and chlorogenic acid against infectious bursal disease virus in embryonic eggs. Poult Sci. 2021; 100(4):100987. https:// doi.org/10.1016/j.psj.2021.01.010 PMid:33639350 PMCid: PMC7921620.

Zhu Y, Gu X, Zhang M, Lv X, Zhang C, Li J, et al. Epigallocatechin-3-gallate exhibits antiviral effects against the duck Tembusu virus via blocking virus entry and upregulating type I interferons. Poult Sci. 2021; 100(4):100989. https://doi.org/10.1016/j.psj.2021.01.012 PMid:33647721 PMCid: PMC7921876.

Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm. 2020; 28(3):391-5. https://doi.org/10.1080/09273 948.2020.1738501 PMid:32175797 PMCid: PMC7103678.

Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004; 78(20):11334-9. https://doi.org/10.1128/JVI.78.20.11334- 11339.2004 PMid:15452254 PMCid: PMC521800.

Tallei TE, Tumilaar SG, Niode NJ, Fatimawali Null, Kepel BJ, Idroes R, et al. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica. 2020; 2020:6307457. https://doi.org/10.1155/2020/6307457 PMid:33425427 PMCid: PMC7773461.

Orosco FL, Quimque MT. Antiviral potential of terpenoids against major viral infections: Recent advances, challenges, and opportunities. J Adv Biotech Ther. 2024; 7(1):221-38. https://doi.org/10.5455/jabet.2024.d19

Eskier D, Karakülah G, Suner A, Oktay Y. RdRp mutations are associated with SARS-CoV-2 genome evolution. PeerJ. 2020; 8:e9587. https://doi.org/10.7717/peerj.9587 PMid:32742818 PMCid: PMC7380272.

Hassan STS, Šudomová M, Mazurakova A, Kubatka P. Insights into antiviral properties and molecular mechanisms of non-flavonoid polyphenols against human herpesviruses. Int J Mol Sci. 2022; 23(22):13891. https://doi.org/10.3390/ijms232213891 PMid:36430369 PMCid: PMC9693824.

Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan STS. Berberine in human oncogenic herpesvirus infections and their linked cancers. Viruses. 2021; 13(6):1014. https://doi.org/10.3390/v13061014 PMid:34071559 PMCid: PMC8229678.

Borenstein R, Hanson BA, Markosyan RM, Gallo ES, Narasipura SD, Bhutta M, et al. Ginkgolic acid inhibits fusion of enveloped viruses. Sci Rep. 2020; 10(1):4746. https://doi.org/10.1038/s41598-020-61700-0 https://doi.org/10.1038/s41598-020-64445-y

Siqueira EM da S, Lima TLC, Boff L, Lima SGM, Lourenço EMG, Ferreira ÉG, et al. Antiviral potential of Spondias mombin L. leaves extract against herpes simplex virus type-1 replication using In Vitro and In Silico approaches. Planta Med. 2020; 86(7):505-15. https://doi.org/10.1055/a-1135-9066 PMid:32247285.

Rajtar B, Skalicka-Woźniak K, Świątek Ł, Stec A, Boguszewska A, Polz-Dacewicz M. Antiviral effect of compounds derived from Angelica archangelica L. on herpes simplex virus-1 and coxsackievirus B3 infections. Food Chem Toxicol. 2017; 109:1026-31. https://doi.org/10.1016/j.fct.2017.05.011 PMid:28487231.

Cheng Z, Sun G, Guo W, Huang Y, Sun W, Zhao F, et al. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines. Virol Sin. 2015; 30(4):261-8. https://doi.org/10.1007/s12250-015-3584-5 PMid:26268473 PMCid: PMC8200874.

Parvez MK, Tabish Rehman Md, Alam P, Al-Dosari MS, Alqasoumi SI, Alajmi MF. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharm J. 2019; 27(3):389-400. https://doi.org/10.1016/j.jsps.2018.12.008 PMid:30976183 PMCid: PMC6439212.

Ciesek S, von Hahn T, Colpitts CC, Schang LM, Friesland M, Steinmann J, et al. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology. 2011; 54(6):1947-55. https://doi.org/10.1002/hep.24610 PMid:21837753.

Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G, Descamps V, et al. (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology. 2012; 55(3):720. https://doi.org/10.1002/hep.24803. PMid:22105803.

Chowdhury P, Sahuc ME, Rouillé Y, Rivière C, Bonneau N, Vandeputte A, et al. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. Plos one. 2018; 13(11):e0198226. https://doi.org/10.1371/journal.pone.0198226 PMid:30485282 PMCid: PMC6261387.

Orosco FL. Current advances in antiviral potential of artemisia against major viral infections. J Bacteriol Virol. 2023; 53(2):61-73. https://doi.org/10.4167/jbv.2023.53.2.061

Hesari A, Ghasemi F, Salarinia R, Biglari H, Tabar Molla Hassan A, Abdoli V, et al. Effects of curcumin on NF-κB, AP-1 and Wnt/β-catenin signalling pathway in hepatitis B virus infection. J Cell Biochem. 2018; 119(10):7898-904. https://doi.org/10.1002/jcb.26829 PMid:29923222.

Nicholls JM, Chan RWY, Russell RJ, Air GM, Peiris JSM. Evolving complexities of influenza virus and its receptors. Trends Microbiol. 2008; 16(4):149-57. https://doi.org/10.1016/j.tim.2008.01.008 PMid:18375125.

Cho HM, Doan TP, Ha TKQ, Kim HW, Lee BW, Pham HTT, et al. Dereplication by High-Performance Liquid Chromatography (HPLC) with Quadrupole-Time-of-Flight Mass Spectroscopy (qTOF-MS) and antiviral activities of phlorotannins from Ecklonia cava. Mar Drugs. 2019; 17(3):149. https://doi.org/10.3390/md17030149 PMid:30836593 PMCid: PMC6471242.

Singh SB, Liu W, Li X, Chen T, Shafiee A, Dreikorn S, et al. Structure-activity relationship of cytochrome bc1 reductase inhibitor broad spectrum antifungal ilicicolin H. Bioorg Med Chem Lett. 2013; 23(10):3018-22. https://doi.org/10.1016/j.bmcl.2013.03.023 PMid:23562597.

La Rosa G, Muscillo M. 5 - Molecular detection of viruses in water and sewage. In: Cook N, editor. Viruses in food and water [Internet]. Woodhead Publishing; 2013; 97-125. (Woodhead Publishing Series in Food Science, Technology and Nutrition). Available from: https://www.sciencedirect.com/science/article/pii/B9780857094308500058

Atmar RL. Noroviruses: State of the art. Food Environ Virol. 2010; 2(3):117-26. https://doi.org/10.1007/s12560-010-9038-1 PMid:20814448 PMCid:PMC2929844.

Choi Y, Kim E, Moon S, Choi JD, Lee MS, Kim YM. Phaeophyta extracts exhibit antiviral activity against Feline Calicivirus. Fish Aquat Sci. 2014; 17(1):155-8. https://doi.org/10.5657/FAS.2014.0155

Venkatesan J, Keekan KK, Anil S, Bhatnagar I, Kim SK. Phlorotannins. In: Melton L, Shahidi F, Varelis P. Encyclopedia of Food Chemistry [Internet]. Oxford: Academic Press. 2019 [cited 2023 Jul 13]; .p. 515-27. Available from: https://www.sciencedirect.com/science/article/pii/B9780081005965223603 https://doi.org/10.1016/B978-0-08-100596-5.22360-3 PMCid:PMC7150275.

In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus. Algae. 2015; 30(3):241-6. https://doi.org/10.4490/algae.2015.30.3.241

Mehrbod P, Hudy D, Shyntum D, Markowski J, Łos MJ, Ghavami S. Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomolecules. 2021; 11(1):10. https://doi.org/10.3390/biom11010010 PMid:33374214 PMCid: PMC7824064.

Choi HJ, Song JH, Kwon DH. Quercetin 3-rhamnoside exerts anti-influenza A virus activity in mice. Phytother Res PTR. 2012; 26(3):462-4. https://doi.org/10.1002/ptr.3529 PMid:21728202.

Makarova MN. [Bioavailability and metabolism of flavonoids]. Vopr Pitan. 2011; 80(3):4-12.

Orosco FL. Breaking the chains: advancements in antiviral strategies to combat Nipah virus infections. Int. J. One Health. 2023; 9(2):2455-8931. https://doi.org/10.14202/IJOH.2023.122-133

Savov VM, Galabov AS, Tantcheva LP, Mileva MM, Pavlova EL, Stoeva ES, et al. Effects of rutin and quercetin on monooxygenase activities in experimental influenza virus infection. Exp Toxicol Pathol Off J Ges Toxicol Pathol. 2006; 58(1):59-64. https://doi.org/10.1016/j.etp.2006.05.002 PMid:16793246.

Qiu X, Kroeker A, He S, Kozak R, Audet J, Mbikay M, et al. Prophylactic efficacy of quercetin 3-β-O-d-glucoside against Ebola virus infection. Antimicrob Agents Chemother. 2016; 60(9):5182-8. https://doi.org/10.1128/AAC.00307-16 PMid:27297486 PMCid: PMC4997876.

Ding Y, Dou J, Teng Z, Yu J, Wang T, Lu N, et al. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and mice and its inhibition of neuraminidase. Arch Virol. 2014; 159(12):3269-78. https://doi.org/10.1007/s00705-014-2192-2 PMid:25078390.

Chu M, Xu L, Zhang MB, Chu ZY, Wang YD. Role of baicalin in anti-influenza virus A as a otent Iniducer of IFN-gamma. BioMed Res Int. 2015; 2015:263630. https://doi.org/10.1155/2015/263630 PMid:26783516 PMCid: PMC4689896.

Zang N, Xie X, Deng Y, Wu S, Wang L, Peng C, et al. Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J Virol. 2011; 85(24):13061-8. https://doi.org/10.1128/JVI.05869-11 PMid:21937650 PMCid: PMC3233156.

Huang H, Liao D, Zhou G, Zhu Z, Cui Y, Pu R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine Int J Phytother Phytopharm. 2020; 77:153230. https://doi.org/10.1016/j.phymed.2020.153230 PMid:32682225.

Orosco FL. Immune evasion mechanisms of porcine epidemic diarrhoea virus: A comprehensive review. Vet Integr Sci. 2024; 22(1):171-92. https://doi.org/10.12982/VIS.2024.014

Orosco FL. Current progress in diagnostics, therapeutics, and vaccines for African swine fever virus. Vet Integr Sci. 2023;21(3):751-81. https://doi.org/10.12982/VIS.2023.054

Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012; 3(4):200-1. https://doi.org/10.4103/2231-4040.104709 PMid:23378939 PMCid: PMC3560124.

Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacology. 2015; 4(1):27-30.

Giovinazzo G, Gerardi C, Uberti-Foppa C, Lopalco L. Can natural polyphenols Help in reducing cytokine storm in COVID-19 patients? Mol Basel Switz. 2020; 25(24):5888. https://doi.org/10.3390/molecules25245888 PMid:33322757 PMCid: PMC7763290.

Souza SJ, Petrilli AA, Teixeira AM, Pontilho PM, Carioca AA, Luzia LA, et al. Effect of chocolate and mate tea on the lipid profile of individuals with HIV/AIDS on antiretroviral therapy: A clinical trial. Nutr Burbank Los Angel Cty Calif. 2017; 43-44:61-8. https://doi.org/10.1016/j.nut.2017.06.017 PMid:28935146.

Butt N, Anoshia, Khan MA, Akbar A. Effectiveness of sofosbuvir and daclatasvir in treatment of Hepatitis-C: An experience of tertiary care hospital in Karachi. Pak J Med Sci. 2021; 37(7):2014-9. https://doi.org/10.12669/pjms.37.7.4627 PMid:34912436 PMCid: PMC8613042.

Kamal DAM, Salamt N, Zaid SSM, Mokhtar MH. Beneficial effects of green tea catechins on female reproductive disorders: A review. Molecules. 2021; 26(9):2675. https://doi.org/10.3390/molecules26092675 PMid:34063635 PMCid: PMC8124874.

Miyoshi N, Tanabe H, Suzuki T, Saeki K, Hara Y. Applications of a standardised green tea catechin preparation for viral warts and human papillomavirus-related and unrelated cancers. Molecules. 2020; 25(11):2588. https://doi.org/10.3390/molecules25112588 PMid:32498451 PMCid: PMC7321293.

Grandolfo M, Milani M. Efficacy and Tolerability of polyphenon E in "difficult-to-treat" multiple genital warts in an HIV-positive male subject. Case Rep Dermatol. 2017; 9(2):55-9. https://doi.org/10.1159/000477839 PMid:28868001 PMCid: PMC5567009.

Rob F, Jůzlová K, Sečníková Z, Jiráková A, Hercogová J. Successful treatment with 10% sinecatechins ointment for recurrent anogenital warts in an eleven-year-old child. Pediatr Infect Dis J. 2017; 36(2):235-6. https://doi.org/10.1097/INF.0000000000001397 PMid:27832019.

Garcia FAR, Cornelison T, Nuño T, Greenspan DL, Byron JW, Hsu CH, et al. Results of a phase II randomised, double-blind, placebo-controlled trial of polyphenon E in women with persistent high-risk HPV infection and low-grade cervical intraepithelial neoplasia. Gynecol Oncol. 2014; 132(2):377-82. https://doi.org/10.1016/j.ygyno.2013.12.034 PMid:24388920 PMCid: PMC3955221.

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, et al. Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018; 16(1):71. https://doi.org/10.1186/s12951-018-0392-8 PMid:30231877 PMCid: PMC6145203.

Mansi K, Kumar R, Jindal N, Singh K. Biocompatible nanocarriers an emerging platform for augmenting the antiviral attributes of bioactive polyphenols: A review. J Drug Deliv Sci Technol. 2023; 81:104269. https://doi.org/10.1016/j.jddst.2023.104269

Paradkar A, Ambike AA, Jadhav BK, Mahadik KR. Characterisation of curcumin-PVP solid dispersion obtained by spray drying. Int J Pharm. 2004; 271(1):281-6. https://doi.org/10.1016/j.ijpharm.2003.11.014 PMid:15129995.

Ge ZQ, Du XY, Huang XN, Qiao B. Enhanced oral bioavailability of ursolic acid nanoparticles via antisolvent precipitation with TPGS1000 as a stabiliser. J Drug Deliv Sci Technol. 2015; 29:210-7. https://doi.org/10.1016/j.jddst.2015.08.001

Orosco F. Advancing the frontiers: Revolutionary control and prevention paradigms against Nipah virus. Open Veterinary Journal. 2023; 13(9):1056-70. https://doi.org/10.5455/OVJ.2023.v13.i9.1 PMid:37842102 PMCid: PMC10576574.

Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K, et al. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics. 2019; 9(23):6920-35. https://doi.org/10.7150/thno.35826 PMid:31660077 PMCid: PMC6815955.