Optimizing Polyphenol Content and Extraction Methods for Antioxidant Constituents from Portulaca oleracea: Comparing Reflux and Maceration Methods with Various Solvents
DOI:
https://doi.org/10.18311/jnr/2024/35407Keywords:
Flavonoids, Maceration, Phenolics, Portulaca oleracea, Reflux, Radical Scavenging ActivityAbstract
Background: The pursuit of developing effective drugs as antioxidants can be traced back to herbal ingredients, including purslane (Portulaca oleracea). The potential of purslane as a medicinal herb can be maximized by selecting the most suitable extraction method and type of solvent. Objective: To assess the levels of total phenolic compounds, total flavonoids, and radical scavenging capacity in P. oleracea obtained through various extraction methods and solvents. Methods: This study combines maceration and reflux methods with 96% ethanol, 80% ethanol, 96% methanol, and 80% methanol solvents to extract total phenolics, flavonoids, and radical scavenging activity from purslane. The folin-ciocalteu method was employed for measuring phenolic content, the AlCl3 method for flavonoid content, and the DPPH method for radical scavenging activity determination. Results: The reflux method using 80% methanol produced the highest total phenolic content, 5.15 ± 0.07 mg GAE/g DW. The maceration method using the same solvent yielded the highest total flavonoid content, 5.74 ± 0.29 mg QE/g DW. Both extraction methods showed similar radical scavenging activity, 1.10 ± 0.003 mg AAE/g DW for maceration and 1.07 ± 0.04 mg AAE/g DW for reflux. Conclusion: The extraction method and solvent significantly impact the total phenolic and flavonoid content produced by P. oleracea.
Downloads
Metrics
Published
How to Cite
License
Copyright (c) 2024 Haryoto, Waras Nurcholis, Novian Liwanda, Roni Kartiman, Syarifah Iis Aisyah (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-22
Published 2024-08-31
References
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018; 13:757-772. https://doi.org/10.2147/CIA.S158513
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016; 4(5):519522. https://doi.org/10.3892/br.2016.630
Mittler R. ROS are good. Trends Plant Sci. 2017; 22(1):1119. https://doi.org/10.1016/j.tplants.2016.08.002
Dziubla T, Butterfield DA, editors. Oxidative stress and biomaterials. Academic Press. 2016. https://doi.org/10.1016/B978-0-12-803269-5.00014-0
Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. Molecules. 2018; 23(4):965. https://doi.org/10.3390/molecules23040965
Saini RK, Rengasamy KRR, Mahomoodally FM, Keum YS. Protective effects of lycopene in cancer, cardiovascular, and neurodegenerative diseases: An update on epidemiological and mechanistic perspectives. Pharmacol Res. 2020; 155:104730. https://doi.org/10.1016/j.phrs.2020.104730
Perrotta I, Aquila S. The role of oxidative stress and autophagy in atherosclerosis. Oxid Med Cell Longev. 2015. p. 130315. https://doi.org/10.1155/2015/130315
Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A mini review. Oxid Med Cell Longev. 2016. p. 8590578. https:// doi.org/10.1155/2016/8590578
Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB, et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell. 2013; 12(6):761-773. https://doi.org/10.1016/j.stem.2013.04.006
Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: The bright side of the moon. Exp Mol Med. 2020; 52:192-203. https://doi.org/10.1038/s12276-020-0384-2
Moussa Z, Judeh ZMA, Ahmed SA. Nonenzymatic exogenous and endogenous antioxidants. Free Radical Medicine and Biology. 2019. https://doi.org/10.5772/intechopen.87778
Ighodaro OM, Akinloye OA. First line defence antioxidantssuperoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018; 54(4):287-293. https://doi.org/10.1016/j.ajme.2017.09.001
Yadav A, Kumari R, Yadav A, Mishra JP, Srivatva S, Prabha S. Antioxidants and its functions in human body - A review. Res Environ Life Sci. 2016; 9(11):1328-1331.
Chandrasekara A, Shahidi F. Herbal beverages: Bioactive compounds and their role in disease risk reduction A review. J Tradit Complement Med. 2018; 8(4):451458. https://doi.org/10.1016/j.jtcme.2017.08.006
Saboon, Chaudhari SK, Arshad S, Amjad MS, Akhtar MS. Natural compounds extracted from medicinal plants and their applications. Natural Bio-active Compounds. Springer. 2019. p. 193–207. https://doi.org/10.1007/978981-13-7154-7_7
Kumar GP, Anilakumar KR, Naveen S. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn J. 2015; 7(1):1-17. https://doi.org/10.5530/pj.2015.1.1
Husein SG, Sundalian M, Husna N. Review: Component analysis of purslanes chemicals compound (Portulaca oleraceae L. and Portulaca grandiflora Hook.). J Sains Kes. 2021; 3(2):317-327. https://doi.org/10.25026/jsk.v3i2.278
Jha AK, Sit N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci Technol. 2022; 119:579-591. https://doi.org/10.1016/j.tifs.2021.11.019
Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chin Med. 2018; 13:20. https://doi.org/10.1186/s13020018-0177-x
Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal. 2014; 22(3):296-302. https://doi.org/10.1016/j.jfda.2013.11.001
Kumar SPJ, Prasad SR, Banerjee R, Agarwal DK, Kulkarni KS, Ramesh KV. Green solvents and technologies for oil extraction from oilseeds. Chem Cent J. 2017; 11(1):9. https:// doi.org/10.1186/s13065-017-0238-8
Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J Food Qual. 2017; 9305047. https:// doi.org/10.1155/2017/9305047
Khumaida N, Syukur M, Bintang M, Nurcholis W. Phenolic and flavonoid content in ethanol extract and agromorphological diversity of Curcuma aeruginosa accessions growing in West Java, Indonesia. Biodiversitas. 2019; 20(3):656-663. https://doi.org/10.13057/biodiv/d200306
Calvindi J, Syukur M, Nurcholis W. Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodiversitas. 2020; 21(6):2420-2424. https://doi.org/10.13057/biodiv/d210612
Uddin MK, Juraimi AS, Ali ME, Ismail MR. Evaluation of antioxidant properties and mineral composition of Purslane (Portulaca oleracea L.) at different growth stages. Int J Mol Sci. 2012; 13(8):10257-10267. https://doi.org/10.3390/ ijms130810257
Atere TG, Akinloye OA, Ugbaja RN, Ojo DA, Dealtry G. In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Sci Hum Wellness. 2018; 7(4):266-272. https://doi.org/10.1016/j.fshw.2018.09.004
Cujic N, Savikin K, Jankovic T, Pljevljakusic D, Zdunic G, Ibric S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016; 194:135-142. https://doi.org/10.1016/j.foodchem.2015.08.008
Nurcholis W, Khumaida N, Syukur M, Bintang M. Variability of total phenolic and flavonoid content and antioxidant activity among 20 Curcuma aeruginosa Roxb. accessions of Indonesia. Asian J Biochem. 2016; 11(3):142148. https://doi.org/10.3923/ajb.2016.142.148
Oboh G. Effect of blanching on the antioxidant properties of some tropical green leafy vegetables. LWT - Food Sci Technol. 2005; 38(5):513-517. https://doi.org/10.1016/j.lwt.2004.07.007
Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: A review. Curr Res Food Sci. 2021; 4:200-214. https://doi.org/10.1016/j.crfs.2021.03.011
Yao L, Jiang Y, Datta N, Singanusong R, Liu X, Duan J, Raymont K, Lisle A, Xu Y. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem. 2004; 84(2):253263. https://doi.org/10.1016/S0308-8146(03)00209-7
Hapsari S, Yohed I, Kristianita RA, Jadid N, Aparamarta HW, Gunawan S. Phenolic and flavonoid compounds extraction from Calophyllum inophyllum leaves. Arab J Chem. 2022; 15(3):103666. https://doi.org/10.1016/j.arabjc.2021.103666
Chaaban H, Ioannou I, Chebil L, Slimane M, Gerardin C, Paris C, Charbonnel C, Chekir L, Ghoul M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J Food Process Preserv. 2017; 41:e13203. https:// doi.org/10.1111/jfpp.13203
Yahia Y, Benabderrahim MA, Tlili N, Hannachi H, Ayadi L, Elfalleh W. Comparison of three extraction protocols for the characterization of caper (Capparis spinosa L.) leaf extracts: Evaluation of phenolic acids and flavonoids by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC–ESI–MS) and the antioxidant activity. Anal Lett. 2020; 53(9):1366-1377. https://doi.org/10.1080/00032719.2019.1706546
Chen D, Yao JN, Liu T, Zhang HY, Li RR, Zhang ZJ, Gu XZ. Research and application of Portulaca oleracea in pharmaceutical area. Chin Herb Med. 2019; 11(2):150159. https://doi.org/10.1016/j.chmed.2019.04.002
Banjaranohor SDS, Artanti N. Antioxidant properties of flavonoids. Med J Indones. 2014; 23(4):239-244. https://doi.org/10.13181/mji.v23i4.1015
Santos-Sanchez NF, Salas-Coronado R, Villanueva-Canongo C, Hernandez-Carlos B. Antioxidant compounds and their antioxidant mechanism. Antioxidants. 2019. https://doi.org/10.5772/intechopen.85270
Nurcholis W, Putri DNS, Husnawati H, Aisyah SI, Prioesoeryanto BP. Total flavonoid content and antioxidant activity of ethanol and ethyl acetate extracts from accessions of Amomum compactum fruits. Ann Agric Sci. 2021; 66(1):58-62. https://doi.org/10.1016/j.aoas.2021.04.001
Velderrain-Rodriguez GR, Palafox-Carlos H, WallMedrano A, Ayala-Zavala JF, Chen C-YO, Robles-Sanchez M, Astiazaran-Garcia H, Alvarez-Parrilla E, GonzalezAguilar GA. Phenolic compounds: Their journey after intake. Food Funct. 2014; 5(2):189-197. https://doi.org/10.1039/c3fo60361j
Campos MRS. Bioactive compounds: Health benefits and potential applications. Woodhead Publishing.2019; iii. https://doi.org/10.1016/B978-0-12-814774-0.01001-X
Rosa LAD, Moreno-Escamilla JO, Rodrigo-Garcia J, Alvarez-Parrilla E. Chapter 12 - Phenolic compounds. Postharvest Physiology and Biochemistry of Fruits and Vegetables. Woodhead Publishing. 2019. p. 253-271. https:// doi.org/10.1016/B978-0-12-813278-4.00012-9.
Albuquerque BR, Heleno SA, Oliveira MBPP, Barros L, Ferreira ICFR. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021; 12(1):14-29. https://doi.org/10.1039/d0fo02324h
Foster JL, Huthwaite T, Yesberg JA, Garry M, Loftus EF. Repetition, not number of sources, increases both susceptibility to misinformation and confidence in the accuracy of eyewitnesses. Acta Psychol. 2012; 139(2):320326. https://doi.org/10.1016/j.actpsy.2011.12.004
Cheynier V. Polyphenols in foods are more complex than often thought. Am J Clin Nutr. 2005; 81(1):223S-229S. https:// doi.org/10.1093/ajcn/81.1.223S
Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci. 2021; 22(7):3380. https://doi.org/10.3390/ijms22073380
Hassan A, Barber SJ. The effects of repetition frequency on the illusory truth effect. Cogn Res Princ Implic. 2021; 6(38). https://doi.org/10.1186/s41235-021-00301-5
Santos-Buelga C, San Feliciano A. Flavonoids: From structure to health issues. Molecules. 2017; 22(3):477. https://doi.org/10.3390/molecules22030477
Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540-27557. https://doi.org/10.1039/C5RA01911G.
Sorensen AM, Durand E, Laguerre M, Bayrasy C, Lecomte J, Villeneuve P, Jacobsen C. Antioxidant properties and efficacies of synthesized alkyl caffeates, ferulates, and coumarates. J Agric Food Chem. 2014; 62(52):12553-12562. https://doi.org/10.1021/jf500588s
Jayaprakasha GK, Rao LJ, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 2006; 98(4):720-724. https://doi.org/10.1016/j.foodchem.2005.06.037
Amorati R, Baschieri A, Cowden A, Valgimigli L. The antioxidant activity of quercetin in water solution. Biomimetics. 2017; 2(3):9. https://doi.org/10.3390/biomimetics2030009
Park JS, Rho HS, Kim DH, Chang IS. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 2006; 54(8):2951-2956. https://doi.org/10.1021/jf052900a
Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C, Liu M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S Afr J Bot. 2021; 137:257-264. https://doi.org/10.1016/j.sajb.2020.10.022
Zanwar AA, Badole SL, Shende PS, Hegde MV, Bodhankar SL. Antioxidant role of catechin in health and disease. In: Watson RR, Preedy VR, Zibadi S.Polyphenols in Human Health and Disease. 2014; 1:267-271. https://doi.org/10.1016/B978-0-12-398456-2.00021-9
Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015; 18(B):757-781. https://doi.org/10.1016/j.jff.2015.01.047