Comparative Analysis of Phytochemicals and Antioxidant Potential of Ethanol Leaf Extracts of Psidium guajava and Syzygium jambos

Jump To References Section

Authors

  • Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru - 560029, Karnataka ,IN
  • Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru - 560029, Karnataka ,IN

DOI:

https://doi.org/10.18311/jnr/2024/36164

Keywords:

Antioxidants, DPPH, GC-MS, Psidium guajava, Phytochemicals, Syzygium jambos

Abstract

Background: Plant-based drugs for various human ailments are becoming very important in the current domain of therapeutics. Aim: Psidium guajava and Syzygium jambos are two such plant species known for their medicinal properties in traditional systems of medicine like Ayurveda. Methods: Phytochemical analysis including GCMS, and antioxidant studies (DPPH) was carried out for both plant extracts. Results: Comparative phytochemical analyses of ethanol extracts of both these plants have shown the existence of bioactive components like tannins, polyphenols, alkaloids, flavonoids and terpenoids. These phytochemicals were quantified and the ethanol extracts were subjected to GCMS analysis which showed the presence of cis-β-farnesene, cis-calamenene, copaene, humulene, caryophyllene, phytol, neophytadiene, n-hexadecanoic acid etc, many of which possess diverse properties like antimicrobial, antibiofilm, antioxidant and anti-inflammatory. DPPH and reducing power assays revealed the excellent radical scavenging activity of the extracts. Conclusion: Among the two plants under the current study, S. jambos extract showed better results when compared to P. guajava concerning the antioxidant potential and the quantity of flavonoids, alkaloids, polyphenols and tannins present in the plant samples.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-11-06

How to Cite

Santhosh, S. K., & Sarojini, S. (2024). Comparative Analysis of Phytochemicals and Antioxidant Potential of Ethanol Leaf Extracts of <i>Psidium guajava</i> and <i>Syzygium jambos</i>. Journal of Natural Remedies, 24(10), 2173–2187. https://doi.org/10.18311/jnr/2024/36164

Issue

Section

Research Articles

Categories

Received 2024-01-10
Accepted 2024-08-19
Published 2024-11-06

 

References

Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M. The phytochemistry and medicinal value of Psidium guajava (guava). Clin Phytosci. 2018; 4(1):32. https://doi.org/10.1186/s40816-018-0093-8

Gupta M, Wali A, Anjali, Gupta S, Annepu SK. Nutraceutical potential of guava. In: Mérillon JM, Ramawat KG, editors. Bioactive Molecules in Food [Internet]. Cham: Springer International Publishing; 2018. p. 1–27. https://doi.org/10.1007/978-3-319-54528-8_85-1

Ghaderi F, Ebrahimi E, Sari Aslani F, Koohi-Hosseinabadi O, Koohpeyma F, Irajie C, et al. The effect of hydroalcoholic extract of Psidium guajava L. on the experimentally induced oral mucosal wound in rats. BMC Complement Med Ther. 2022; 22:201. https://doi.org/10.1186/s12906-022-03655-5

Tousif MI, Nazir M, Saleem M, Tauseef S, Shafiq N, Hassan L, et al. Psidium guajava L.: An incalculable but underexplored food crop: Its phytochemistry, ethnopharmacology, and industrial applications. Molecules. 2022; 27(20):7016. https://doi.org/10.3390/molecules27207016

Owusu E, Ahorlu MM, Afutu E, Akumwena A, Asare GA. Antimicrobial activity of selected medicinal plants from a Sub-Saharan African country against bacterial pathogens from post-operative wound infections. Med Sci. 2021; 9(2):23. https://doi.org/10.3390/medsci9020023

Ochieng MA, Bakrim WB, Bitchagno GTM, Mahmoud MF, Sobeh M. Syzygium jambos L. Alston: An insight into its phytochemistry, traditional uses, and pharmacological properties. Front Pharmacol. 2022; 13:786712. https://doi.org/10.3389/fphar.2022.786712

Bonfanti G, Bitencourt PR, Bona KS, Silva PS, Jantsch LB, Pigatto AS, et al. Syzygium jambos and Solanum guaraniticum show similar antioxidant properties but induce different enzymatic activities in the brains of rats. Molecules. 2013; 18(8):9179–94. https://doi.org/10.3390/molecules18089179

Selvam NT, V V, Kumar D. Tissue level antioxidant activity of leaf extract of Syzygium jambos Linn. in paracetamol intoxicated Wistar rats. J Intern Med. 2014; 2(8):107–11.

Baliga MS, Pai KSR, Saldanha E, Ratnu VS, Priya R, Adnan M, et al. Rose Apple (Syzygium jambos (L.) Alston). In: Yahia EM, editor. Fruit and Vegetable Phytochemicals: Chemistry and Human Health. 2017. p. 1235–42. https://doi.org/10.1002/9781119158042.ch65

Kancherla N, Dhakshinamoothi A, Chitra K, Komaram RB. Preliminary analysis of phytoconstituents and evaluation of anthelmintic property of Cayratia auriculata (in vitro). Mædica. 2019; 14(4):350–6. https://doi.org/10.26574/maedica.2019.14.4.350

Dibacto REK, Tchuente BRT, Nguedjo MW, Tientcheu YMT, Nyobe EC, Edoun FLE, et al. Total polyphenol and flavonoid content and antioxidant capacity of some varieties of Persea americana peels consumed in Cameroon. Sci World J. 2021; 2021:8882594. https://doi.org/10.1155/2021/8882594

Osagie-Eweka S, Orhue N, Ekhaguosa D. Comparative phytochemical analyses and in-vitro antioxidant activity of aqueous and ethanol extracts of Simarouba glauca (paradise tree). Eur J Med Plants. 2016; 13:1–11. https://doi.org/10.9734/EJMP/2016/24736

Gupta M, Thakur S, Sharma A, Gupta S. Qualitative and quantitative analysis of phytochemicals and pharmacological value of some dye-yielding medicinal plants. Orient J Chem. 2013; 29:475–81. https://doi.org/10.13005/ojc/290211

Oncho DA, Ejigu MC, Urgessa OE. Phytochemical constituent and antimicrobial properties of guava extracts of East Hararghe of Oromia, Ethiopia. Clin Phytosci. 2021; 7(1):37. https://doi.org/10.1186/s40816-021-00268-2

Tlili H, Hanen N, Arfa AB, Neffati M, Boubakri A, Buonocore D, et al. Biochemical profile and in vitro biological activities of extracts from seven folk medicinal plants growing wild in southern Tunisia. Plos One. 2019; 14(9). https://doi.org/10.1371/journal.pone.0213049

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, et al. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022; 27(4):1326. https://doi.org/10.3390/molecules27041326

Xu C, Liang Z, Tang D, Xiao T, Tsunoda M, Zhang Y, et al. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of volatile components from guava leaves. J Essent Oil Bear Plants. 2017; 20(6):1536–46. https://doi.org/10.108 0/0972060X.2017.1417746

Uchôa Lopes CM, Saturnino de Oliveira JR, Holanda VN, Rodrigues AYF, Martins da Fonseca CS, Galvão Rodrigues FF, et al. GC-MS analysis and hemolytic, antipyretic, and antidiarrheal potential of Syzygium aromaticum (clove) essential oil. Separations. 2020; 7(2):35. https://doi.org/10.3390/separations7020035

Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, et al. Major phytochemicals: recent advances in health benefits and extraction methods. Molecules. 2023; 28(2):887. https://doi.org/10.3390/molecules28020887

Sharma P, Thakur D. Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci Rep. 2020; 10(1):4104. https://doi.org/10.1038/s41598-020-60968-6

Pratama OA, Tunjung WAS, Sutikno S, Daryono BS. Bioactive compound profile of melon leaf extract (Cucumis melo L. ‘Hikapel’) infected by downy mildew. Biodiversitas J Biol Divers. 2019. https://doi.org/10.13057/biodiv/d201143

Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol. 2021; 61(6):557–68. https://doi.org/10.1002/jobm.202100061

Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des. 2012; 80(3):434–9. https://doi.org/10.1111/j.1747-0285.2012.01418.x

Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, et al. Phytol: A review of biomedical activities. Food Chem Toxicol. 2018; 121:82–94. https://doi.org/10.1016/j.fct.2018.08.032

Mosaoa RM, Yaghmoor SS, Moselhy SS. Oxygen scavenging, anti-inflammatory, and antiglycation activity of pomegranate flavonoids (Punica granatum) against streptozotocin toxicity-induced diabetic nephropathy in rats. Environ Sci Pollut Res Int. 2023; 30(6):16687–93. https://doi.org/10.1007/s11356-022-23367-0

Hegazy MM, Mostafa RM, El-Sayed YA, Baz MM, Khater HF, Selim AM, et al. The efficacy of Saussurea costus extracts against hematophagous arthropods of camel and cattle. Pak Vet J. 2022; 42(4):547–53. https://doi.org/10.29261/pakvetj/2022.064

Ivanescu B, Miron A, Corciova A. Sesquiterpene lactones from Artemisia genus: biological activities and methods of analysis. J Anal Methods Chem. 2015; 2015:247685. https://doi.org/10.1155/2015/247685

Singh B, Singh S. Antimicrobial activity of terpenoids from Trichodesma amplexicaul Roth. Phytother Res. 2003; 17(7):814–6. https://doi.org/10.1002/ptr.1202

Thirumalaisamy R, Ammashi S, Muthusamy G. Screening of anti-inflammatory phytocompounds from Crateva adansonii leaf extracts and its validation by in silico modelling. J Genet Eng Biotechnol. 2018; 16(2):711–9. https://doi.org/10.1016/j.jgeb.2018.03.004

Vats S, Gupta T. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiol Mol Biol Plants. 2017; 23(1):239–48. https://doi.org/10.1007/s12298016-0407-6

Lomarat P, Chancharunee S, Anantachoke N, Kitphati W, Sripha K, Bunyapraphatsara N. Bioactivity-guided separation of the active compounds in Acacia pennata responsible for the prevention of Alzheimer’s disease. Nat Prod Commun. 2015; 10(8):1431–4. https://doi.org/10.1177/1934578X1501000830

Rhetso T, Shubharani R, Roopa MS, Sivaram V. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don. Future J Pharm Sci. 2020; 6(1):102. https://doi.org/10.1186/s43094-020-00100-7

Lotfy MM, Hassan HM, Hetta MH, El-Gendy AO, Mohammed R. Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile-derived fungus Aspergillus awamori. Beni-Suef Univ J Basic Appl Sci. 2018; 7(3):263–9. https://doi.org/10.1016/j.bjbas.2018.02.002

El-Sheekh MM, El-Shenody RAEK, Bases EA, El Shafay SM. Comparative assessment of antioxidant activity and biochemical composition of four seaweeds, Rocky Bay of Abu Qir in Alexandria, Egypt. Food Sci Technol. 2021; 41(suppl 1):29–40. https://doi.org/10.1590/fst.06120

Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK. Heneicosane—a novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind Crops Prod. 2020; 154:112748. https://doi.org/10.1016/j.indcrop.2020.112748

Khan F, Magaji M, Aguye I, Hussaini I, Hamza A, Olorukooba A, et al. Phytochemical profiling of the bioactive principles of Alysicarpus glumaceus (Vahl) DC. Aerial parts. Istanbul J Pharm. 2021; 51(2):228–38. https://doi.org/10.26650/IstanbulJPharm.2020.0071

Dahham S, Tabana Y, Iqbal M, Ahamed M, Ezzat M, Majid A, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015; 20(7):11808–29. https://doi.org/10.3390/molecules200711808

Tardugno R, Spagnoletti A, Grandini A, Maresca I, Sacchetti G, Pellati F, et al. Chemical profile and biological activities of Cedrelopsis grevei H. Baillon bark essential oil. Plant Biosyst. 2018; 152(1):120–9. https://doi.org/10.1080/11263 504.2016.1255271

Faridha Begum I, Mohankumar R, Jeevan M, Ramani K. GC-MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J Microbiol. 2016;56(4):426–32. https://doi.org/10.1007/ s12088-016-0609-1

Leandro LM, Vargas FS, Barbosa PCS, Neves JKO, da Silva JA, da Veiga-Junior VF. Chemistry and biological activities of terpenoids from Copaifera spp. Oleoresins. Molecules. 2012; 17(4):3866–89. https://doi.org/10.3390/molecules17043866

Satyal P, Shrestha S, Setzer WN. Composition and bioactivities of an (E)-β-farnesene chemotype of chamomile (Matricaria chamomilla) essential oil from Nepal. Nat Prod Commun. 2015; 10(8):1453–7. https://doi.org/10.1177/1934578X1501000835

Salleh WMNHW, Kammil MF, Farediah A, Sirat H. Antioxidant and anti-inflammatory activities of essential oil and extracts of Piper miniatum. Nat Prod Commun. 2015; 10. https://doi.org/10.1177/1934578X1501001151

Sultana R, Islam MD, Tanjum F, Rahman MM, Haque MA, Hossain R. Antioxidant, antibacterial and antifungal properties of black pepper essential oil (Piper nigrum Linn) and molecular docking and pharmacokinetic studies of its major component. Orient J Chem. 2022; 38(6):1554–60. https://doi.org/10.13005/ojc/380630

Roukia H, Mahfoud HM. Chemical composition and antioxidant and antimicrobial activities of the essential oil from Teucrium polium gyri (Labiatae). J Med Plants Res. 2013; 7(45):3343–8. https://doi.org/10.5897/JMPR2013.5082

Abu-Serag NA, Al-Garaawi NI, Ali AM, Alsirrag MA. Analysis of bioactive phytochemical compounds of (Cyperus aucheri Jaub.) by using gas chromatographymass spectrometry. IOP Conf Ser Earth Environ Sci. 2019; 388(1):012063. https://doi.org/10.1088/17551315/388/1/012063

Yeo SK, Ali AY, Hayward OA, Turnham D, Jackson T, Bowen ID, et al. β-Bisabolene, a sesquiterpene from the essential oil extract of Opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines. Phytother Res. 2016; 30(3):418–25. https://doi.org/10.1002/ptr.5543

Takei M, Umeyama A, Arihara S. T-cadinol and calamenene induce dendritic cells from human monocytes and drive Th1 polarization. Eur J Pharmacol. 2006; 537(1–3):190–9. https://doi.org/10.1016/j.ejphar.2006.02.047

Cazella LN, Glamoclija J, Soković M, Gonçalves JE, Linde GA, Colauto NB, et al. Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front Plant Sci. 2019; 10:27. https://doi.org/10.3389/fpls.2019.00027

Mandal AK, Paudel S, Pandey A, Yadav P, Pathak P, Grishina M, et al. Guava leaf essential oil as a potent antioxidant and anticancer agent: validated through experimental and computational study. Antioxidants. 2022; 11(11):2204. https://doi.org/10.3390/antiox11112204

Espinoza J, Urzúa A, Bardehle L, Quiroz A, Echeverría J, González-Teuber M. Antifeedant effects of essential oil, extracts, and isolated sesquiterpenes from Pilgerodendron uviferum (D. Don) Florin heartwood on red clover borer Hylastinus obscurus (Coleoptera: Curculionidae). Molecules. 2018; 23(6):1282. https://doi.org/10.3390/molecules23061282

Ryu NH, Park KR, Kim SM, Yun HM, Nam D, Lee SG, et al. A hexane fraction of guava leaves (Psidium guajava L.) induces anticancer activity by suppressing AKT/mammalian target of rapamycin/ribosomal p70 S6 kinase in human prostate cancer cells. J Med Food. 2012; 15(3):231–41. https://doi.org/10.1089/jmf.2011.1701

Lee Y, Park HG, Kim V, Cho MA, Kim H, Ho TH, et al. Inhibitory effect of α-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem Biol Interact. 2018; 289:90–7. https://doi.org/10.1016/j.cbi.2018.04.029

Alqahtani SS, Moni SS, Sultan MH, Ali Bakkari M, Madkhali OA, Alshahrani S, et al. Potential bioactive secondary metabolites of Actinomycetes sp. isolated from rocky soils of the heritage village Rijal Alma, Saudi Arabia. Arab J Chem. 2022; 15(5):103793. https://doi.org/10.1016/j.arabjc.2022.103793

Seo J, Lee S, Elam ML, Johnson SA, Kang J, Arjmandi BH. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Sci Nutr. 2014; 2(2):174–80. https://doi.org/10.1002/fsn3.91

Majhi R, Maharjan R, Shrestha M, Mali A, Basnet A, Baral M, et al. Effect of altitude and solvent on Psidium guajava Linn. leaves extracts: phytochemical analysis, antioxidant, cytotoxicity and antimicrobial activity against food spoilage microbes. BMC Chem. 2023; 17(1):36. https://doi.org/10.1186/s13065-023-00948-9

Phenolic compounds from Psidium guajava (Linn.) leave the effect of the extraction-assisted method upon total phenolics content and antioxidant activity. Biointerface Res Appl Chem. 2020; 11(2):9346–57. https://doi.org/10.33263/BRIAC112.93469357

Hartati R, Nadifan HI, Fidrianny I. Crystal guava (Psidium guajava L. “Crystal”): evaluation of in vitro antioxidant capacities and phytochemical content. Sci World J. 2020. https://doi.org/10.1155/2020/9413727

Sornapudi SD, Srivastava M. Quantitative estimation of phytochemicals in different leaf extracts. J Pharm Innov. 2022; SP-11(9):125–8. https://thepharmajournal.com

Heinrich M, Mah J, Amirkia V. Alkaloids used as medicines: structural phytochemistry meets biodiversity—an update and forward look. Molecules. 2021; 26(7):1836. https://doi.org/10.3390/molecules26071836

Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015; 11(8):982–91. https://doi.org/10.7150/ijbs.12096

Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011; 48(4):412–22. https://doi.org/10.1007/s13197-011-0251-1

Pham DT, Nguyen DXT, Lieu R, Huynh QC, Nguyen NY, Quyen TTB, et al. Silk nanoparticles for the protection and delivery of guava leaf (Psidium guajava L.) extract for the cosmetic industry, a new approach for an old herb. Drug Deliv. 2023; 30(1):2168793. https://doi.org/10.1080/10717544.2023.2168793