Development and Characterisation of Curcuminoid Loaded Hydrogel for the Effective Treatment of Diabetic Retinopathy
DOI:
https://doi.org/10.18311/jnr/2024/36288Keywords:
Curcuminoid, Diabetic Retinopathy, Dispersion, Hydrogel FormulationAbstract
Background: The leading cause of vision loss in individuals with diabetes worldwide is diabetic retinopathy. A curcuminoid-loaded hydro gel has been proposed to improve solubility and ocular permeation. Aim: A gel-based formulation using gellan gum was hypothesised to enhance its bioavailability. The RP-HPLC analysis confirmed curcuminoid isolated from raw turmeric. Methods: By varying the gellan gum concentrations, three different formulations were developed. The developed curcuminoid-loaded gel formulation was further characterised by its FT-IR signature analysis, particle size, zeta potential, morphology and in-vitro release behaviour. Results: The signature analysis results indicate a drug’s signature in the formulation. The study revealed sphere-sized particles ranging from 6387±113 to 4595±184 nm with zeta potential ranging from -21 ±2.29 mV to -19.6 ±3.19 mV. A sustained release pattern was observed by the in-vitro release studies. The results of ex vivo corneal permeation studies indicate that the developed curcuminoid loaded hydrogel have some exposure to the posterior segment of the eye. Conclusion: To conclude the developed curcuminoid hydrogel may provide exposure to the posterior segment of the eye due to its significant corneal permeation property.
Downloads
Metrics
Downloads
Published
How to Cite
License
Copyright (c) 2024 Durga Prasad Kondeti, T. Sundarrajan (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-06-24
Published 2024-07-31
References
Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003; 22:1-29. https://doi.org/10.1016/S1350-9462(02)00043-5 PMid:12597922. DOI: https://doi.org/10.1016/S1350-9462(02)00043-5
Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2014; 11:CD011234. https://doi.org/10.1002/14651858.CD011234 DOI: https://doi.org/10.1002/14651858.CD011234
Osaadon P, Fagan XJ, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond). 2014; 28(5):510-20. https://doi.org/10.1038/eye.2014.13 PMid:24525867 PMCid: PMC4017101. DOI: https://doi.org/10.1038/eye.2014.13
Gonzalez-Cortes JH, Martinez-Pacheco VA, Gonzalez-Cantu JE, Bilgic A, de Ribot FM, Sudhalkar A, Mohamed-Hamsho J, Kodjikian L, Mathis T. Current treatments and innovations in diabetic retinopathy and diabetic macular oedema. Pharmaceutics. 2022; 15(1):122. https://doi.org/10.3390/pharmaceutics15010122 PMid:36678750 PMCid: PMC9866607. DOI: https://doi.org/10.3390/pharmaceutics15010122
Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. British J Pharmacol. 1998; 124(3):425-7. https://doi.org/10.1038/sj.bjp.0701877 PMid:9647462 PMCid: PMC1565424. DOI: https://doi.org/10.1038/sj.bjp.0701877
Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-κb signalling. Int J Cancer. 2004; 111(5):679-92. https://doi.org/10.1002/ijc.20333 PMid:15252836. DOI: https://doi.org/10.1002/ijc.20333
Anand AB, P, Sundaram C, Jhurani S, Kunnumakkara Aggarwal BB. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Letters. 2008; 267(1):133-64. https://doi.org/10.1016/j.canlet.2008.03.025 PMid:18462866. DOI: https://doi.org/10.1016/j.canlet.2008.03.025
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007; 4(6):807-18. https://doi.org/10.1021/mp700113r PMid:17999464. DOI: https://doi.org/10.1021/mp700113r
Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011; 16(6):4567-98. https://doi.org/10.3390/molecules16064567 PMid:21642934 PMCid: PMC6264403. DOI: https://doi.org/10.3390/molecules16064567
Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptors through reducing the activity of the transcription factor egr-1. Oncogene. 2006; 25(2):278-87. https://doi.org/10.1038/sj.onc.1209019 PMid:16170359. DOI: https://doi.org/10.1038/sj.onc.1209019
Chen J, Tang XQ, Zhi J, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen, PX.Curcumin protects pc12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ros-inos pathway. Apoptosis. 2006; 943-53. https://doi.org/10.1007/s10495-006-6715-5 PMid:16547587. DOI: https://doi.org/10.1007/s10495-006-6715-5
Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini LK, Aggarwal BB. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Product Rep. 2011; 28(12):1937-55. https://doi.org/10.1039/c1np00051a PMid:21979811 PMCid: PMC3604998. DOI: https://doi.org/10.1039/c1np00051a
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-74. https://doi.org/10.1016/j.cell.2011.02.013 PMid:21376230. DOI: https://doi.org/10.1016/j.cell.2011.02.013
Joint FA. Evaluation of certain food additives and contaminants: sixty-first report of the joint fao/who expert' committee on food additives. World Health Organization. 2004.
Kiso Y, Suzuki Y, Watanabe N, Oshima Y, Hikino H. Antihepatotoxic principles of Curcuma longa rhizomes. Plantamedica. 1983; 49(11):185-7. https://doi.org/10.1055/s-2007-969845 PMid:6657788. DOI: https://doi.org/10.1055/s-2007-969845
KwakHS, Yang KM, Ahn J. Microencapsulated iron for milk fortification. Jagri Food Chem. 2003; 51(26):7770-4. https://doi.org/10.1021/jf030199 PMid:14664543. DOI: https://doi.org/10.1021/jf030199+
Lemmon MA, Schlessinger J. Cell signalling by receptor tyrosine kinases. Cell. 2010; 141(7):1117-34. https://doi.org/10.1016/j.cell.2010.06.011 PMid:20602996. PMCid: PMC2914105. DOI: https://doi.org/10.1016/j.cell.2010.06.011
Parimita SP, Ramshankar YV, Suresh S, Guru Row TN. Redetermination of curcumin: (1e, 4z, 6e)-5-hydroxy-1, 7-bis (4-hydroxy-3-methoxyphenyl) hepta-1, 4, 6-trien-3-one. Actacrystallographica section e. Structure Reports Online. 2007; 63(2):o860-2. https://doi.org/10.1107/S160053680700222X DOI: https://doi.org/10.1107/S160053680700222X
Jansson PE, Lindberg B, Sandford PA. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr Res. 1983; 124:135-9. https://doi.org/10.1016/0008-6215(83)88361-X DOI: https://doi.org/10.1016/0008-6215(83)88361-X
Osmalek T, Froelich A, Tasarek S. Application of gellan gum in pharmacy and medicine. Int J Pharm. 2014; 466:328-40. https://doi.org/10.1016/j.ijpharm.2014.03.038 PMid:24657577. DOI: https://doi.org/10.1016/j.ijpharm.2014.03.038
Bacelar AH, Silva-Correia J, Oliveira JM, Reis RL. Recent progress in gellan gum hydrogels provided by functionalisation strategies. J Mater Chem B. 2016; 4(37):6164-74. https://doi.org/10.1039/C6TB01488G PMid:32263628. DOI: https://doi.org/10.1039/C6TB01488G
Chakraborty S, Jana S, Gandhi, A, Sen, KK, Zhiang W, Kokare C. Gellan gum microspheres containing a novel alpha-amylase from marine Nocardiopsis sp. strain B2 for immobilisation. Int J Biol Macromol. 2014; 70:292-9. https://doi.org/10.1016/j.ijbiomac.2014.06.046 PMid:25014636. DOI: https://doi.org/10.1016/j.ijbiomac.2014.06.046
Mahdi MH, Conway BR, Smith AM. Development of muco adhesive sprayable gellan gum fluid gels. Int J Pharm. 2015; 488(1-2):12-19. https://doi.org/10.1016/j.ijpharm.2015.04.011 PMid:25863119. DOI: https://doi.org/10.1016/j.ijpharm.2015.04.011
Rosas-Flores W, Ramos-Ramirez EG, Salazar-Montoya JA. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum. Carbohydr Polym. 2013; 98(1):1011-17. https://doi.org/10.1016/j.carbpol.2013.06.077 PMid:23987441. DOI: https://doi.org/10.1016/j.carbpol.2013.06.077
Farani MR, Azarian M, Sheikh Hossein HH, Abdolvahabi ZAH, Mohammadi Abgarmi, Moradi ZA, Mousavi SM, Ashrafizadeh M, Makvandi P, Mohammad Saeb R, Rabiee N. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer. ACS Appl Bio Mater. 2022; 5(3):1305-18. https://doi.org/10.1021/acsabm.1c01311 PMid:35201760 PMCid: PMC8941513. DOI: https://doi.org/10.1021/acsabm.1c01311
Perera WPTD, Dissanayake RK, Ranatunga UL, Hettiarachchi NM, Perera KDC, Unagolla JM, De Silva RT, Pahalagedara LR. Curcumin-loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Adv. 2020; 10(51):30785-95. https://doi.org/10.1039/D0RA05755J PMid:35516060 PMCid: PMC9056367. DOI: https://doi.org/10.1039/D0RA05755J
Iranshahy M, Hanafi-Bojd MY, Aghili SH, Iranshahi M, Nabavi SM, Saberi S, Filosa R, Nezhadi IF, Hasanpour M. Curcumin-loaded Mesoporous silica nanoparticles for drug delivery: synthesis, biological assays and therapeutic potential - a review. RSC Adv. 2023; 13(32):22250-67. https://doi.org/10.1039/D3RA02772D PMid:37492509 PMCid: PMC10363773. DOI: https://doi.org/10.1039/D3RA02772D
Chen X, Wang D, Guo X, Li X, Ye W, Qi Y, Gu W. Curcumin-loaded mPEG-PLGA nanoparticles attenuates the apoptosis and corticosteroid resistance induced by cigarette smoke extract. Front Pharmacol. 2022; 25(13):824652. https://doi.org/10.3389/fphar.2022.824652 DOI: https://doi.org/10.3389/fphar.2022.824652
Mariam C, Paraskevi SS, Zainab A, Tatyana LP, Boonya T, Xin F, Ehsan M, Rainer H. Redox-responsive hydrogels loaded with an antibacterial peptide as controlled drug delivery for healing infectious wounds. J Appl Polym Sci. 2021; 24:1-10.