Unveiling the Phytochemical Profile and In-silico Studies on Bioactive Compounds from Falconeria insignis Royle against Various Target Proteins: A Computational Approach
DOI:
https://doi.org/10.18311/jnr/2024/36369Keywords:
ADMET Prediction, Binding Affinity, Bioactive Compounds, Falconeria insignis, Molecular DockingAbstract
Backgrounds: Plants have long been appreciated for their therapeutic properties and modern science increasingly validates their medicinal potential. Falconeria insignis Royle, an underutilised plant, holds promise due to its diverse bioactive compounds and essential nutrients. Aim: To study the phytochemical profile and conduct in-silico studies on bioactive compounds from F. insignis against various target proteins. Methods: This study investigated the phytochemical composition of F. insignis using Gas Chromatography and Mass Spectrum (GC-MS) analysis and predicted the Absorption, Distribution, Metabolites, Excretion and Toxicity (ADMET) properties of identified compounds through Swiss ADME. Additionally, molecular docking studies were conducted against diverse target proteins like Human Epidermal Growth Factor Receptor 2 (HER2), Aldose Reductase 2 (ALR2), E. coli gyrase B and Cyclooxygenase 1 (COX-1) using Autodock. Result: The analysis revealed tannins, alkaloids, flavonoids, carbohydrates, glycosides, saponins, triterpenoids and steroids. Further GC-MS identification yielded five bioactive compounds: 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, diethyl phthalate, 2-hydroxy-4-methylbenzaldehyde, tridecanoic acid and palmitic acid. In-silico docking studies assessed the binding affinities of these compounds against the target proteins. Notably, the bioactive compounds exhibited binding affinities ranging from -6.5 to -4.5 kcal/mol towards HER2 protein, suggesting potential interactions. Conclusion: This study offers valuable insights into the molecular mechanisms of F. insignis bioactive compounds, paving the way for developing herbal medicines for various diseases.
Downloads
Metrics
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Padmavathy Balachandran, Sathish Muthukrishnan, Ganesh Kasi, Chamundeeswari Raman, Jeevan Pandiyan, Samuel Ebinezer Balakrishnan (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-10
Published 2024-08-31
References
Bhardwaj A, Sharma A, Cooper R, Bhardwaj G, Gaba J, Mutreja V, Chauhan A. A comprehensive phytochemical, ethnomedicinal, pharmacological ecology and conservation status of Picrorhiza kurroa Royle ex Benth.: An endangered Himalayan medicinal plant. Process Biochem. 2021; 109:7286. https://doi.org/10.1016/j.procbio.2021.07.003
Amrati FE, Bourhia M, Slighoua M, Salamatullah AM, Alzahrani A, Ullah R, Bari A, Bousta D. Traditional medicinal knowledge of plants used for cancer treatment by communities of mountainous areas of Fez-MeknesMorocco. Saudi Pharma J. 2021; 29(10):1185-204. https://doi.org/10.1016/j.jsps.2021.09.005. PMid:34703372 PMCid: PMC8523330.
Eswari JS, Yadav M. New perspective of drug discovery from herbal medicinal plants: Andrographis paniculata and Bacopa monnieri (terpenoids) and novel target identification against Staphylococcus aureus. S Afr J Bot. 2019; 124:188-98. https://doi.org/10.1016/j.sajb.2019.05.013
Tran N, Pham B, Le L. Bioactive compounds in antidiabetic plants: From herbal medicine to modern drug discovery. Biology. 2020; 9(9):252. https://doi.org/10.3390/ biology9090252 PMid:32872226 PMCid: PMC7563488.
Larayetan R, Ololade ZS, Ogunmola OO, Ladokun A. Phytochemical constituents, antioxidant, cytotoxicity, antimicrobial, antitrypanosomal and antimalarial potentials of the crude extracts of Callistemon citrinus. eCAM. 2019. https://doi.org/10.1155/2019/5410923 PMid:31558912 PMCid: PMC6735214.
Devkota HP, Basnet P, Yahara S. A new phenolic compound, 4-dehydrochebulic acid-1, 6-dimethyl ester from Sapium insigne leaves. J Nat Med. 2010; 64:191-3. https://doi.org/10.1007/s11418-009-0378-9 PMid:20037803.
Manandhar NP. Plants and people of Nepal. Timber Press. 2002.
Syed H, Chethan KKV, Chandrashekar KRJ. Pharm Res. 2011; 4:90−2.
Panda SS, Sahoo K, Khatua D, Dhal NK. Phytochemical investigation and antibacterial activity of leaf and stem extracts of Sapium indicum Linn. Int J Phytomedicine. 2012; 4(3):409.
He Q, Zhang L, Li T, Li C, Song H, Fan P. Genus Sapium (Euphorbiaceae): A review on traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2021; 277:114206. https://doi.org/10.1016/j.jep.2021.114206 PMid:34000366.
Keskes H, Belhadj S, Jlail L, El Feki A, Damak M, Sayadi S, Allouche N. LC-MS-MS and GC-MS analyses of biologically active extracts and fractions from Tunisian Juniperus phoenice leaves. Pharm Biol. 2017; 55(1):88-95. https:// doi.org/10.1080/13880209.2016.1230139 PMid:27925471 PMCid: PMC7011873.
Yadav DK, Kumar S, Saloni, Singh H, Kim MH, Sharma P, Misra S, Khan F. Molecular docking, QSAR and ADMET studies of withanolide analogs against breast cancer. Drug Des Devel Ther. 2017; 1859-70. https://doi.org/10.2147/ DDDT.S130601 PMid:28694686 PMCid: PMC5491705.
Fan S, Chang J, Zong Y, Hu G, Jia J. GC-MS analysis of the composition of the essential oil from Dendranthema indicum Var. Aromaticum using three extraction methods and two columns. Mol. 2018; 23(3):576. https://doi.org/10.3390/molecules23030576 PMid:29510531 PMCid: PMC6017652.
Rasamalla SP, Kumar SG. Phytochemical screening for ethanolic extraction of Cochlospermum religiosum and Justicia betonica-GC-MS analysis of bio-active compounds. NeuroQuantology. 2022; 20(11):6469. 10.14704/ nq.2022.20.11.NQ66645
Grover A, Sharma K, Gautam S, Gautam S, Gulati M, Singh SK. Diabetes and its complications: Therapies available, anticipated and aspired. Curr Diabetes Rev. 2021; 17(4):397420. https://doi.org/10.2174/1573399816666201103144231 PMid:33143627.
Olawale F, Olofinsan K, Iwaloye O, Ologuntere TE. Phytochemicals from Nigerian medicinal plants modulate therapeutically-relevant diabetes targets: Insight from computational direction. Adv Tradit Med. 2021; 22(5):1-5. https://doi.org/10.1007/s13596-021-00598-z
Georges K, Jayaprakasam B, Dalavoy SS, Nair MG. Pestmanaging activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso. Bioresour Technol. 2008; 99(6):2037-45. https://doi.org/10.1016/j.biortech.2007.02.049 PMid:17478091
Govindarajan M. Larvicidal and repellent activities of Sida acuta Burm. f.(Family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med. 2010; 3(9):691-5. https://doi.org/10.1016/S1995-7645(10)60167-8
Colón-González FJ, Sewe MO, Tompkins AM, Sjödin H, Casallas A, Rocklöv J, Caminade C, Lowe R. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: A multi-model, multi-scenario intercomparison modelling study. Lancet Planet Health. 2021; 5(7):e404-14. https://doi.org/10.1016/S25425196(21)00132-7 PMid:34245711.
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as antiinflammatory agents. Pharmacol Res. 2019; 139:126-40. https://doi.org/10.1016/j.phrs.2018.11.001 PMid:30395947.
Loza-Mejía MA, Salazar JR, Sánchez-Tejeda JF. Insilico studies on compounds derived from Calceolaria: Phenylethanoid glycosides as potential multitarget inhibitors for the development of pesticides. Biomolecules. 2018; 8(4):121. https://doi.org/10.3390/biom8040121 PMid:30360548 PMCid: PMC6322355.
Bharathi A, Roopan SM, Vasavi CS, Munusami P, Gayathri GA, Gayathri M. In-silico molecular docking and in vitro antidiabetic studies of dihydropyrimido [4, 5-a] acridin-2-amines. Biomed Res Int. 2014; 1:971569. https:// doi.org/10.1155/2014/971569 PMid:24991576 PMCid: PMC4060768.
Tiwari P, Mishra BN, Sangwan NS. Phytochemical and pharmacological properties of Gymnema sylvestre: An important medicinal plant. Biomed Res Int. 2014; 1:830285. https://doi.org/10.1155/2014/830285 PMid:24511547 PMCid: PMC3912882.
Hodgson J. ADMET-turning chemicals into drugs. Nat Biotechnol. 2001; 19(8):722-6. https://doi.org/10.1038/90761 PMid:11479558.
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1):42717. https://doi.org/10.1038/srep42717 PMid:28256516 PMCid: PMC5335600.
Megantara S, Wathoni N, Mohammed AF, Suhandi C, Ishmatullah MH, Putri MF. In-silico study: Combination of α-mangostin and chitosan conjugated with trastuzumab against human epidermal growth factor receptor 2. Polymers. 2022; 14(13):2747. https://doi.org/10.3390/ polym14132747 PMid:35808792 PMCid:PMC9268814.
Kilinç n. Inhibition profiles and molecular docking studies of antiproliferative agents against aldose reductase enzyme. Indian J Chem Tech. 2021; 5(1):77-82. https://doi.org/10.32571/ijct.944049
Weyesa A, Eswaramoorthy R, Melaku Y, Mulugeta E. Antibacterial, docking, DFT and ADMET properties evaluation of chalcone-sulfonamide derivatives prepared using ZnO nanoparticle catalysis. Adv Appl Bioinforma Chem. 2021; 14:133-44. https://doi.org/10.2147/AABC.S336450 PMid:34924761 PMCid: PMC8674577.
Swe HN, Sritularak B, Rojnuckarin P, Luechapudiporn R. Inhibitory mechanisms of lusianthridin on human platelet aggregation Int J Mol Sci. 2021; 22(13):6846. https:// doi.org/10.3390/ijms22136846 PMid:34202163 PMCid: PMC8267677.
Khanam A, Kavita KM, Sharma RK, Farooqui A, Ahmad S, Kumar P, Husain A. In-silico exploration of cyanobacterial bioactive compounds for managing diabetes: Targeting alpha-amylase and beta-glucosidase. Intelligent Pharmacy. 2023; 1(4):232-43. https://doi.org/10.1016/j.ipha.2023.08.003
Das SK, Deka SJ, Paul D, Gupta DD, Das TJ, Maravi DK, Tag H, Hui PK. In-silico-based identification of phytochemicals from Houttuynia cordata Thunb. as potential inhibitors for overexpressed HER2 and VEGFR2 cancer genes. J Biomol Struct Dyn. 2022; 40(15):6857-67. https://doi.org/10.1080/0 7391102.2021.1891136 PMid:33625319.
Singla H, Munshi A, Banipal RP, Kumar V. Recent updates on the therapeutic potential of HER2 tyrosine kinase inhibitors for the treatment of breast cancer. Curr Cancer Drug Targets. 2018; 18(4):306-27. https://doi.org/10.2174/1 568009617666170623122213 PMid:28669349.
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov. 2004; 3(11):935-49. https://doi.org/10.1038/nrd1549 PMid:15520816.
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules. 2019; 10(1):47. https://doi.org/10.3390/ biom10010047 PMid:31892257 PMCid: PMC7022400.
Piscopo M, Tenore GC, Notariale R, Maresca V, Maisto M, De Ruberto F, Heydari M, Sorbo S, Basile A. Antimicrobial and antioxidant activity of proteins from Feijoa sellowiana Berg. fruit before and after in vitro gastrointestinal digestion. Nat Prod Res. 2020; 34(18):2607-11. https://doi.org/10.1080 /14786419.2018.1543686 PMid:30600713.
Liu HB, Zhang H, Yu JH, Xu CH, Ding J, Yue JM. Cytotoxic diterpenoids from Sapium insigne. J Nat Prod. 2012; 75(4):722-7. https://doi.org/10.1021/np300004y PMid:22409148.
Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001; 44(12):1841-6. https://doi.org/10.1021/jm015507e PMid:11384230.
Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012; 7(10):863-75. https://doi.org/10.1517/17460441.2012.714363 PMid:22992175.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012; 64:4-17. https://doi.org/10.1016/j.addr.2012.09.019
Pires DE, Kaminskas LM, Ascher DB. Prediction and optimisation of pharmacokinetic and toxicity properties of the ligand. Computational drug discovery and design. 2018:271-84. https://doi.org/10.1007/978-1-4939-7756-7_14 PMid:29594777.
Stegemann S, Leveiller F, Franchi D, De Jong H, Lindén H. When poor solubility becomes an issue: from early stage to proof of concept. Eur J Pharm Sci. 2007; 31(5):249-61. https://doi.org/10.1016/j.ejps.2007.05.110 PMid:17616376.
Srimai V, Ramesh M, Satya Parameshwar K, Parthasarathy T. Computer-aided design of selective Cytochrome P450 inhibitors and docking studies of alkyl resorcinol derivatives. Med Chem Res. 2013; 22:5314-23. https://doi.org/10.1007/s00044-013-0532-5
Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, Liu X, Luo X, Luo C, Chen K, Zheng M. In-silico ADME/T modelling for rational drug design. Q Rev Biophys. 2015; 48(4):488-515. https://doi.org/10.1017/S0033583515000190 PMid:26328949.
Katari NK, Gundla R, Reddy PK, Vanam A, Talatam A, Motohashi N, Gollapudi R. Molecular docking studies of glabrene and human epidermal growth factor receptor kinase. https://doi.org/10.36922/itps.v4i1.56