Evaluation of Effect of Seed Cycling on Anthropometric, Biochemical, Hormonal and Nutritional Parameters in the Women Diagnosed with Polycystic Ovarian Syndrome – A Cohort Interventional Study Design
DOI:
https://doi.org/10.18311/jnr/2024/36489Keywords:
Flaxseeds, PCOS, Pumpkin Seeds, Seed Cycling, Sesame Seeds, Sunflower SeedsAbstract
Background: Polycystic Ovary Syndrome (PCOS) is an endocrine disorder of reproductive age group in women and is characterized by obesity, hyper-insulinemia, hyperandrogenism and insulin resistance. Seed cycling has emerged as a potential treatment modality for managing PCOS symptoms. Methods: A total of 290 women diagnosed with PCOS, aged 18-40, and were enrolled in this study after meeting specific eligibility criteria. Participants were randomly divided into two groups: a control group (n=145) and an intervention group (n=145). The control group received a portion-controlled diet along with a daily dose of Metformin 500 mg for 12 weeks. The intervention group followed the same diet but incorporated seed cycling into their regimen. Assessments, including anthropometric measurements, biochemical analyses, hormonal evaluations, and nutritional assessments, were conducted at baseline and after the 12-week treatment period. The Mann-Whitney U test was used to compare outcomes between the two groups before and after treatment, with significance determined at p<0.05. Results: The majority of participants were aged 26-30 years (46.90%), with 60% being non-vegetarian. Among them, 36% were employed, and 14% engaged in physical activity. The intervention group demonstrated significant improvements in anthropometric, biochemical, and hormonal parameters compared to the control group. Notably, there was a decrease in mean energy consumption, carbohydrate intake, and fat intake in the intervention group, while mean protein intake remained unchanged between the groups after 12 weeks. These improvements were statistically significant (p<0.05). Conclusion: The study concluded that women with PCOS showed substantial improvements in anthropometric, biochemical, and hormonal profiles following seed cycling therapy combined with dietary modifications. This suggests that seed cycling, along with a portion-controlled diet, can be an effective strategy for managing PCOS symptoms.
Downloads
Metrics
Downloads
Published
How to Cite
License
Copyright (c) 2024 Harpreet Kour, C. Anitha, Vikrant Ghatnatti, Swetha Patil, Deepti Kadeangadi (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-06-11
Published 2024-07-31
References
El Hayek S, Bitar L, Hamdar LH, Mirza FG, Daoud G. Poly cystic ovarian syndrome: An updated overview. Front Physiol. 2016; 7:124. https://doi.org/.org/10.3389/fphys.2016.00124 PMid: 27092084 PMCid: PMC4820451 DOI: https://doi.org/10.3389/fphys.2016.00124
World Health Organization. Polycystic ovarian syndrome. Key facts. Polycystic ovary syndrome [Internet]. 2024 [cited 2024 Jun 4]. Available from: https://www.who.int/
Nidhi R, Padmalatha V, Nagarathna R, Amritanshu R. Prevalence of polycystic ovarian syndrome in Indian adolescents. J Pediatr Adolesc Gynecol. 2011; 24(4):223-7. https://doi.org/10.1016/j.jpag PMid: 21600812 DOI: https://doi.org/10.1016/j.jpag.2011.03.002
Joshi B, Mukherjee S, Patil A, Purandare A, Chauhan S, Vaidya R. A cross-sectional study of polycystic ovarian syndrome among adolescent and young girls in Mumbai, India. Indian J Endocrinol Metab. 2014; 18(3):317-24. https://doi.org/10.4103/2230-8210.131162 PMid: 24944925 PMCid: PMC4056129 DOI: https://doi.org/10.4103/2230-8210.131162
Gill H, Tiwari P, Dabadghao P. Prevalence of polycystic ovary syndrome in young women from North India: A community-based study. Indian J Endocrinol Metab. 2012; 16:S389-92. Erratum in: Indian J Endocrinol Metab. 2013; 17(1):162. https://doi.org/10.4103/2230-8210.104104 PMid: 23565440 PMCid: PMC3603088 DOI: https://doi.org/10.4103/2230-8210.104104
Ma YM, Li R, Qiao J, Zhang XW, Wang SY, Zhang QF, et al. Characteristics of abnormal menstrual cycle and polycystic ovary syndrome in community and hospital populations. Chin Med J. 2010; 123(16):2185-9. PMid: 20819662
Boyle JA, Cunningham J, O Dea K, Dunbar T, Norman RJ. Prevalence of polycystic ovary syndrome in a sample of Indigenous women in Darwin, Australia. Med J Aust. 2012; 196(1):62-6. https://doi.org/10.5694/mja11.10553 PMid: 22256938 DOI: https://doi.org/10.5694/mja11.10553
Bharali MD, Rajendran R, Goswami J, Singal K, Rajendran V. Prevalence of polycystic ovarian syndrome in India: A systematic review and meta-analysis. Cureus. 2022; 14(12):e32351. https://doi.org/10.7759/cureus.32351 PMid: 36628015 PMCid: PMC9826643 DOI: https://doi.org/10.7759/cureus.32351
Tsutsumi R, Webster NJ. GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr J. 2009; 56(6):729-37. https://doi.org/10.1507/endocrj.k09e-185 PMid: 19609045 PMCid: PMC4307809 DOI: https://doi.org/10.1507/endocrj.K09E-185
Palomba S, Daolio J, La Sala GB. Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol Metab. 2017; 28(3):186-98. https://doi.org/10.1016/j.tem.2016.11.008 PMid: 27988256 DOI: https://doi.org/10.1016/j.tem.2016.11.008
Conway GS, Honour JW, Jacobs HS. Heterogeneity of the polycystic ovary syndrome: clinical, endocrine and ultrasound features in 556 patients. Clin Endocrinol (Oxf). 1989; 30(4):459-70. https://doi.org/10.1111/j.1365-2265.1989.tb00446.x PMid: 2688996 DOI: https://doi.org/10.1111/j.1365-2265.1989.tb00446.x
Lorenz LB, Wild RA. Polycystic ovarian syndrome: An evidence-based approach to evaluation and management of diabetes and cardiovascular risks for today's clinician. Clin Obstet Gynecol. 2007; 50(1):226-43. https://doi.org/10.1097/GRF.0b013e31802f5197 PMid: 17304038 DOI: https://doi.org/10.1097/GRF.0b013e31802f5197
Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015; 36(5):487-525. https://doi.org/10.1210/er.2015-1018 PMid: 26426951 PMCid: PMC4591526 DOI: https://doi.org/10.1210/er.2015-1018
Haidari F, Banaei-Jahromi N, Zakerkish M, Ahmadi K. The effects of flaxseed supplementation on metabolic status in women with polycystic ovary syndrome: A randomized open-labeled controlled clinical trial. Nutr J. 2020; 19(1):8. https://doi.org/10.1186/s12937-020-0524-5 PMid: 31980022 PMCid: PMC6982376 DOI: https://doi.org/10.1186/s12937-020-0524-5
Mehraban M, Jelodar G, Rahmanifar F. A combination of spearmint and flaxseed extract improved endocrine and histomorphology of ovary in experimental PCOS. J Ovarian Res. 2020; 13(1):32. https://doi.org/10.1186/s13048-020-00633-8 PMid: 32197626 PMCid: PMC7085145 DOI: https://doi.org/10.1186/s13048-020-00633-8
Wiweko B, Susanto CA. The effect of metformin and cinnamon on serum anti-mullerian hormone in women having PCOS: A double-blind, randomized, controlled trial. J Hum Reprod Sci. 2017; 10(1):31-6. https://doi.org/10.4103/jhrs PMid:28479753 PMCid: PMC5405645
Atteia HH, Alzahrani S, El-Sherbeeny NA, Youssef AM, Farag NE, Mehanna ET, et al. Evening primrose oil ameliorates hyperleptinemia and reproductive hormone disturbances in obese female rats: Impact on estrus cyclicity. Front Endocrinol (Lausanne). 2020; 10:942. https://doi.org/10.3389/fendo.2019.00942 PMid: 32082253 PMCid: PMC7002433 DOI: https://doi.org/10.3389/fendo.2019.00942
Maharjan R, Nagar PS, Nampoothiri L. Effect of Aloe barbadensis Mill. formulation on Letrozole induced polycystic ovarian syndrome rat model. J Ayurveda Integr Med. 2010; 1(4):273-9. https://doi.org/10.4103/0975-9476.74090 PMid: 21731374 PMCid: PMC3117319 DOI: https://doi.org/10.4103/0975-9476.74090
Shamsi M, Nejati V, Najafi G, Pour SK. Protective effects of licorice extract on ovarian morphology, oocyte maturation, and embryo development in PCOS-induced mice: An experimental study. Int J Reprod Biomed. 2020; 18(10):865-76. https://doi.org/10.18502/ijrm.v13i10.7771 PMid: 33134799 PMCid: PMC7569710 DOI: https://doi.org/10.18502/ijrm.v13i10.7771
Rasheed N, Ahmed A, Nosheen F, Imran A, Islam F, Noreen R, et al. Effectiveness of combined seeds (pumpkin, sunflower, sesame, flaxseed): As adjacent therapy to treat polycystic ovary syndrome in females. Food Sci Nutr. 2023; 11(6):3385-93. https://doi.org/10.1002/fsn3.3328 PMid: 37324929 PMCid: PMC10261760 DOI: https://doi.org/10.1002/fsn3.3328
Mahapatra D, Baro J, Das M. Advantages of seed cycling diet in menstrual dysfunctions: A review based explanation. Pharm Innov J. 2023; 12(4):931-9. DOI: https://doi.org/10.22271/tpi.2023.v12.i4k.19683
WHO/IASO/IOTF. The Asia-Pacific perspective: Redefining obesity and its treatment. Melbourne: Health Communications Australia [Internet]. 2000. [cited 2024 Jun 5]. Available from: https://www.who.int/0957708211_eng.pdf
WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004; 363(9403):157-63. https://doi/.org/10.1016/S0140-6736(03)15268-3 Erratum in: Lancet. 2004; 363(9412):902. PMid: 14726171 DOI: https://doi.org/10.1016/S0140-6736(03)15268-3
Gupta R, Gupta VP, Sarna M, Bhatnagar S, Thanvi J, Sharma V, et al. Prevalence of coronary heart disease and risk factors in an urban Indian population: Jaipur Heart Watch-2. Indian Heart J. 2002; 54(1):59-66. PMid: 11999090
Irfan T, Seher K, Rizwan B, Fatima S, Sani A. Role of seed cycling in polycystic ovarian syndrome: Seed cycling in PCOS. Pak Bio Med J. 2021; 4(2): 21–25. https://doi/.org/10.54393/pbmj.v4i2.122 DOI: https://doi.org/10.54393/pbmj.v4i2.122
Pan A, Yu D, Demark-Wahnefried W, Franco OH, Lin X. Meta-analysis of the effects of flaxseed interventions on blood lipids. Am J Clin Nutr. 2009; 90(2):288-97. https://doi/.org/10.3945/ajcn.2009.27469 PMid: 19515737 PMCid: PMC3361740 DOI: https://doi.org/10.3945/ajcn.2009.27469
Mitrasinovic-Brulic M, Buljan M, Suljevic D. Association of LH/FSH ratio with menstrual cycle regularity and clinical features of patients with polycystic ovary syndrome. Middle East Fertil Soc J. 2021; 26:40. https://doi/.org/10.1186/s43043-021-00085-0 DOI: https://doi.org/10.1186/s43043-021-00085-0
Schmidt J, Brännström M, Landin-Wilhelmsen K, Dahlgren E. Reproductive hormone levels and anthropometry in postmenopausal women with Polycystic Ovary Syndrome (PCOS): A 21-year follow-up study of women diagnosed with PCOS around 50 years ago and their age-matched controls. J Clin Endocrinol Metab. 2011; 96(7):2178-85. https://doi/.org/10.1210/jc.2010-2959 PMid: 21508129 DOI: https://doi.org/10.1210/jc.2010-2959
Saadia Z. Follicle Stimulating Hormone (LH: FSH) Ratio in Polycystic Ovary Syndrome (PCOS) - Obese vs. Non-obese women. Med Arch. 2020; 74(4):289-93. https://doi/.org/10.5455/medarh.2020 PMid: 33041447 PMCid: PMC7520057 DOI: https://doi.org/10.5455/medarh.2020.74.289-293
Liu T, Cui YQ, Zhao H, Liu HB, Zhao SD, Gao Y, et al. High levels of testosterone inhibit ovarian follicle development by repressing the FSH signaling pathway. J Huazhong Univ Sci Technolog Med Sci. 2015; 35(5):723-9. https://doi/.org/10.1007/s11596-015-1497-z PMid: 26489629 DOI: https://doi.org/10.1007/s11596-015-1497-z
Nath CK, Barman B, Das A, Rajkhowa P, Baruah P, Baruah M, et al. Prolactin and thyroid stimulating hormone affecting the pattern of LH/FSH secretion in patients with polycystic ovary syndrome: A hospital-based study from North East India. J Family Med Prim Care. 2019; 8(1):256-60. https://doi/.org/10.4103/jfmpc.jfmpc_281_18 PMid: 30911516 PMCid: PMC6396624 DOI: https://doi.org/10.4103/jfmpc.jfmpc_281_18
Davoudi Z, Araghi F, Vahedi M, Mokhtari N, Gheisari M. Prolactin level in Polycystic Ovary Syndrome (PCOS): An approach to the diagnosis and management. Acta Biomed. 2021; 92(5):e2021291. https://doi/.org/10.23750/abm.v92i5.9866 PMid: 34738596 PMCid: PMC8689332
Szosland K, Pawlowicz P, Lewiński A. Prolactin secretion in Polycystic Ovary Syndrome (PCOS). Neuro Endocrinol Lett. 2015; 36(1):53-8. PMid: 25789595
Chelliah R, Ramakrishnan SR, Antony U, Kim SH, Khan I, Tango CN, Kounkeu PN, et al. Antihypertensive effect of peptides from sesame, almond, and pumpkin seeds: in silico and in vivo evaluation. J Agric Life Environ. Science. 2018; 30(1):12-30. https://doi/.org/10.12972/jales.20180002 DOI: https://doi.org/10.12972/jales.20180002
Roy S, Datta S. A comprehensive review on the versatile pumpkin seeds (Cucurbita maxima) as a valuable natural medicine. Int J Curr Res. 2015; 7(8):19355-61.
Syed QA, Akram M, Shukat R. Nutritional and therapeutic effects of the pumpkin seeds. Biomed J Sci Tech Res. 2019; 21(2):15798-803. https://doi/.org/10.26717/BJSTR.2019.21.003586 DOI: https://doi.org/10.26717/BJSTR.2019.21.003586
Adams GG, Imran S, Wang S, Mohammad A, Kok MS, Gray DA, et al. The hypoglycemic effect of pumpkin seeds, Trigonelline (TRG), Nicotinic acid (NA), and D-Chiro-inositol (DCI) in controlling glycemic levels in diabetes mellitus. Crit Rev Food Sci Nut. 2014; 54:1322-9. https://doi/.org/10.1080/10408398.2011.635816 DOI: https://doi.org/10.1080/10408398.2011.635816
Sharma A, Sharma AK, Chand T, Khardiya M, Yadav KC. Antidiabetic and antihyperlipidemic activity of Cucurbita maxima Duchense (pumpkin) seeds on streptozotocin induced diabetic rats. J Pharmacogn Phytochem. 2013; 1(6):108-16.
Tou JC, Chen J, Thompson LU. Flaxseed and its lignan precursor, secoisolariciresinol diglycoside, affect pregnancy outcome and reproductive development in rats. J Nutr. 1998; 128(11):1861-8. https://doi/.org/10.1093/jn/128.11.1861 PMid: 9808635. DOI: https://doi.org/10.1093/jn/128.11.1861
Kajla P, Sharma A, Sood DR. Flaxseed – A potential functional food source. J Food Sci Technol. 2015; 52(4):1857-71. https://doi/.org/10.1007/s13197-014-1293-y PMid: 25829567 PMCid: PMC4375225 DOI: https://doi.org/10.1007/s13197-014-1293-y
Phipps WR, Martini MC, Lampe JW, Slavin JL, Kurzer MS. Effect of flaxseed ingestion on the menstrual cycle. J Clin Endocrinol Metab. 1993; 77(5):1215-9. https://doi/.org/jcem.77.5.8077314 PMid: 8077314 DOI: https://doi.org/10.1210/jcem.77.5.8077314
Tian X, Diaz FJ. Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinol. 2012; 153(2):873-86. https://doi/.org/10.1210/en.2011-1599 PMid: 22147014 PMCid: PMC3275394 DOI: https://doi.org/10.1210/en.2011-1599
Habib FK, Maddy SQ, Stitch SR. Zinc induced changes in the progesterone binding properties of the human endometrium. Acta Endocrinol (Copenh). 1980; 94(1):99-106. https://doi/.org/10.1530/acta.0.0940099 PMid: 7386123 DOI: https://doi.org/10.1530/acta.0.0940099
Hodges RE, Minich DM. Modulation of metabolic detoxification pathways using foods and food-derived components: A scientific review with clinical application. J Nutr Metab. 2015; 2015:760689. https://doi/.org/10.1155/2015/760689 PMid: 26167297 PMCid: PMC4488002 DOI: https://doi.org/10.1155/2015/760689
Guan YS, He Q. Plants consumption and liver health. Evid Based Complement Alternat Med. 2015; 2015:824185. https://doi/.org/10.1155/2015/824185 PMid: 26221179 PMCid: PMC4499388 DOI: https://doi.org/10.1155/2015/824185