Solid Lipid Nanoparticles for the Delivery of Plant-derived Bioactive Compounds in the Treatment of Cancer Disorders – A Review
DOI:
https://doi.org/10.18311/jnr/2024/36537Keywords:
Anticancer, Non-small-cell Lung Cancer, Paclitaxel, Phyto-bioactive Compounds, Solid Lipid NanoparticlesAbstract
Background: The study explores phyto-bioactive compounds in Solid Lipid Nanoparticles (SLN) and their potential use in cancer therapy. Objective: Most phyto-bioactive compounds have properties such as anti-inflammatory agents, antioxidants, anti-microbe agents, anti-arthritic agents, hypoglycemic agents, cardioprotective agents, and anti-cancer agents. Phyto-bioactive compounds are abundant in fruits, vegetables, and whole grains, and may impact metabolic processes improve health, and prevent illness. Breast, colon, and prostate cancers, as well as other malignancies, are now being studied for their potential prevention and treatment using therapies based on phyto-bioactive compounds in in vitro, in vivo, and clinical studies. Methods: More than 10 million individuals have lost their lives to cancer this year alone. Cancer is one of the most malignant and deadly diseases afflicting mankind today, and its death toll continues to rise. SLNs have been extensively used by several research groups to efficiently transport phyto-bioactive substances with enhanced anticancer effects. Now is the time for really groundbreaking ideas and innovations in the field of medicinal nanocarriers. Conclusion: Lipid nanoparticles’ size-dependent properties might lead to new therapeutics. Small size, large surface area, high drug loading, control pattern release, targeted drug release, and interface phase interaction are their benefits. Nanoformulations are undeniably powerful resources for therapeutic delivery applications; the current difficulty is in ensuring their safety, efficacy, and scalability for industrial production and eventual clinical use. Our review offers a novel perspective by focusing on the phyto-bioactive chemicals carried by these SLN nano-carriers, describing recent advancements and their potential applications to cancer therapy.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Kumara Swamy Samanthula, Satya Obbalareddy, Ravi Chander Thatipelli, Agaiah Goud Bairi (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-06-24
Published 2024-07-31
References
Witkamp RF, van Norren K. Let thy food be thy medicine when possible. Eur J Pharmacol. 2018; 836:102-14. https://doi.org/10.1016/j.ejphar.2018.06.026 DOI: https://doi.org/10.1016/j.ejphar.2018.06.026
Hamzalıoglu A, Gokmen V. Chapter 18 - Interaction between bioactive carbonyl compounds and asparagine and impact on acrylamide. Acryl Food. 2016:355-76. http://dx.doi.org/10.1016/B978-0-12-802832-2.00018-8 DOI: https://doi.org/10.1016/B978-0-12-802832-2.00018-8
Devkota HP, Paudel KR, Lall N, Tomczyk M, Atanasov AG. Pharmacology of plant polyphenols in human health and diseases. Front Pharmacol. 2022; 13:945033. https://doi.org/10.3389/fphar.2022.945033 DOI: https://doi.org/10.3389/fphar.2022.945033
Teodoro AJ. Bioactive compounds of food: Their role in the prevention and treatment of diseases. Oxid Med Cell Longev. 2019. https://doi.org/10.1155/2019/3765986 DOI: https://doi.org/10.1155/2019/3765986
Mondal S, Soumya NP, Mini S, Sivan SK. Bioactive compounds in functional food and their role as therapeutics. Bioact Compd Health Dis. 2021; 4(3):24-39. https://doi.org/10.31989/bchd.v4i3.786 DOI: https://doi.org/10.31989/bchd.v4i3.786
Andonova V, Peneva P. Characterization methods for Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC). Curr Pharm Des. 2017; 23(43):6630-42. https://doi.org/10.2174/1381612823666171115105721 DOI: https://doi.org/10.2174/1381612823666171115105721
Ahmed MF, Swain K, Pattnaik S, Dey BK. Quality by design based development of electrospun Nanofibrous Solid Dispersion mats for oral delivery of Efavirenz. Acta Chim Slov. 2024; 71(1). https://doi.org/10.17344/acsi.2023.8538 DOI: https://doi.org/10.17344/acsi.2023.8538
Chakraborty S, Dhibar M, Das A, Swain K, Pattnaik S. A critical appraisal of lipid nanoparticles deployed in cancer pharmacotherapy. Recent Adv Drug Deliv Formul. 2023; 17(2):132-51. https://doi.org/10.2174/2667387817666230726140745 DOI: https://doi.org/10.2174/2667387817666230726140745
Yadav YC, Pattnaik S. Hesperetin-loaded polymeric nanofibers: Assessment of bioavailability and neuroprotective effect. Drug Dev Ind Pharm. 2023; 49(2):240-7. https://doi.org/10.1080/03639045.2023.2201625 DOI: https://doi.org/10.1080/03639045.2023.2201625
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, et al. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv. 2020; 10(45):26777-91. https://doi.org/10.1039/D0RA03491F DOI: https://doi.org/10.1039/D0RA03491F
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018; 68(6):394-424. https://doi.org/10.3322/caac.21492 DOI: https://doi.org/10.3322/caac.21492
Nguyen TT, Nguyen TT, Tran NM, Van Vo G. Lipid-based nanocarriers via nose-to-brain pathway for central nervous system disorders. Neurochem Res. 2022:1-22. https://doi.org/10.1007/s11064-021-03488-7 DOI: https://doi.org/10.1007/s11064-021-03488-7
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: Cancer J Clin. 2023; 73(1):17-48. https://doi.org/10.3322/caac.21763 DOI: https://doi.org/10.3322/caac.21763
Lee WL, Huang JY, Shyur LF. Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxid Med Cell Longev. 2013; 2013. https://doi.org/10.1155/2013/925804 DOI: https://doi.org/10.1155/2013/925804
Tan RS. Glycosylated and non-glycosylated quantum dot-displayed peptides trafficked indiscriminately inside lung cancer cells but discriminately sorted in normal lung cells: An indispensable part in nanoparticle-based intracellular drug delivery. Asian J Pharm Sci. 2018; 13(3):197-211. https://doi.org/10.1016/j.ajps.2017.12.002 DOI: https://doi.org/10.1016/j.ajps.2017.12.002
De Santis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA: Cancer J Clin. 2014; 64(4):252-71. https://doi.org/10.3322/caac.21235 DOI: https://doi.org/10.3322/caac.21235
Fridlender M, Kapulnik Y, Koltai H. Plant derived substances with anti-cancer activity: From folklore to practice. Front Plant Sci. 2015; 6:799. https://doi.org/10.3389/fpls.2015.00799 DOI: https://doi.org/10.3389/fpls.2015.00799
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol. 2020; 10:1614. https://doi.org/10.3389/fphar.2019.01614 DOI: https://doi.org/10.3389/fphar.2019.01614
Maheshwari RA, Raghunathan NJ, Maheshwari A, Mehta SP, Balaraman R. Traditional medicine-a gold mine in the treatment of cancer. J Nat Med. 2022; 22(4):540-7. http://doi.org/10.18311/jnr/2022/30377 DOI: https://doi.org/10.18311/jnr/2022/30377
Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci. 2018; 13(1):12-23. https://doi.org/10.1016/j.ajps.2017.08.004 DOI: https://doi.org/10.1016/j.ajps.2017.08.004
Van Agtmael MA, Eggelte TA, Van Boxtel CJ. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci. 1999; 20(5):199-205. https://doi.org/10.1016/S0165-6147(99)01302-4 DOI: https://doi.org/10.1016/S0165-6147(99)01302-4
Lai HC, Singh NP, Sasaki T. Development of artemisinin compounds for cancer treatment. Invest New Drugs. 2013; 31(1):230-46. https://doi.org/10.1007/s10637-012-9873-z DOI: https://doi.org/10.1007/s10637-012-9873-z
Rogliani P, Calzetta L, Coppola A, Cavalli F, Ora J, Puxeddu E, et al. Optimizing drug delivery in COPD: The role of inhaler devices. Respir Med. 2017; 124:6-14. https://doi.org/10.1016/j.rmed.2017.01.006 DOI: https://doi.org/10.1016/j.rmed.2017.01.006
Mundy C, Kirkpatrick P. Tiotropium bromide. Nat Rev Drug Discov. 2004; 3(8):643-4. doi: 10.1038/nrd1472 https://doi.org/10.1038/nrd1472 DOI: https://doi.org/10.1038/nrd1472
Tembe-Fokunang EA, Charles F, Kaba N, Donatien G, Michael A, Bonaventure N. The potential pharmacological and medicinal properties of neem (Azadirachta indica A. Juss) in the drug development of phytomedicine. J Complement Altern Med Res. 2019; 7(1):1-8. https://doi.org/10.9734/jocamr/2019/v7i130093 DOI: https://doi.org/10.9734/jocamr/2019/v7i130093
Singh S, Pathak N, Fatima E, Negi AS. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur J Med Chem. 2021; 226:113839. https://doi.org/10.1016/j.ejmech.2021.113839 DOI: https://doi.org/10.1016/j.ejmech.2021.113839
Das AM. Clinical utility of nitisinone for the treatment of hereditary tyrosinemia Type-1 (HT-1). CA: Cancer J Clin. 2017:43-8. http://dx.doi.org/10.2147/TACG.S113310 DOI: https://doi.org/10.2147/TACG.S113310
Pasierski M, Szulczyk B. Beneficial effects of capsaicin in disorders of the central nervous system. Molecules. 2022; 27(8):2484. https://doi.org/10.3390/molecules27082484 DOI: https://doi.org/10.3390/molecules27082484
Chand J, Panda SR, Jain S, Murty US, Das AM, Kumar GJ, et al. Phytochemistry and polypharmacology of cleome species: A comprehensive ethnopharmacological review of the medicinal plants. J Ethnopharmacol. 2022; 282:114600. https://doi.org/10.1016/j.jep.2021.114600 DOI: https://doi.org/10.1016/j.jep.2021.114600
Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods. 2017; 6(10):92. https://doi.org/10.3390/foods6100092 DOI: https://doi.org/10.3390/foods6100092
Heinrich M, Teoh HL. Galanthamine from snowdrop — The development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol. 2004; 92(2-3):147-62. https://doi.org/10.1016/j.jep.2004.02.012 DOI: https://doi.org/10.1016/S0378-8741(04)00073-X
Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, et al. Molecular mechanisms of action of genistein in cancer: Recent advances. Front Pharmacol. 2019; 10:1336. https://doi.org/10.3389/fphar.2019.01336 DOI: https://doi.org/10.3389/fphar.2019.01336
Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, et al. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J Pharm Sci. 2011; 100(2):547-57. https://doi.org/10.1002/jps.22285 DOI: https://doi.org/10.1002/jps.22285
Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine: An evidence-based review of its use in Parkinson’s disease. Drugs Aging. 2004; 21:687-709. https://doi.org/10.2165/00002512-200421110-00001 DOI: https://doi.org/10.2165/00002512-200421110-00001
Chelora J, Zhang J, Wan Y, Cui X, Zhao J, Meng XM, et al. Plant-derived single-molecule-based nanotheranostics for photoenhanced chemotherapy and ferroptotic like cancer cell death. ACS Appl Bio Mater. 2019; 2(6):2643-9. https://doi.org/10.1021/acsabm.9b00311 DOI: https://doi.org/10.1021/acsabm.9b00311
Ubaidulla U, Sinha P, Sangavi T, Rathnam G. Development of Silymarin entrapped chitosan phthalate nanoparticles for targeting colon cancer. J Nat Remedies; 2022; 22 (4):559-671. http://doi.org/10.18311/jnr/2022/29816 DOI: https://doi.org/10.18311/jnr/2022/29816
Mamadalieva NZ, Mamedov NA. Taxus brevifolia a highvalue medicinal plant, as a source of taxol. In: Máthé Á, editor. Medicinal and Aromatic Plants of North America. Cham: Springer; 2020. p. 201-18. https://doi.org/10.1007/978-3-030-44930-8_9 DOI: https://doi.org/10.1007/978-3-030-44930-8_9
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin Ther Pat. 2020; 30(3):179-94. https://doi.org/10.1080/13543776.2020.1720649 DOI: https://doi.org/10.1080/13543776.2020.1720649
Samanthula KS, Alli R, Gorre T. Preliminary studies on optimization of Anti-Parkinson drug loaded lipid nanoparticles enriched hydrogel formulations for management of Parkinson’s Disease. Curr Nanomed. 2021; 11(2):112-26. https://doi.org/10.2174/2468187311666210311114908 DOI: https://doi.org/10.2174/2468187311666210311114908
Peng Y, Chen L, Ye S, Kang Y, Liu J, Zeng S, et al. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci. 2020; 15(2):220-36. https://doi.org/10.1016/j.ajps.2020.02.004 DOI: https://doi.org/10.1016/j.ajps.2020.02.004
Montoto SS, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020; 7:319. https://doi.org/10.3389/fmolb.2020.587997 DOI: https://doi.org/10.3389/fmolb.2020.587997
Akbari-Alavijeh S, Shaddel R, Jafari SM. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocoll. 2020; 105:105774. https://doi.org/10.1016/j.foodhyd.2020.105774 DOI: https://doi.org/10.1016/j.foodhyd.2020.105774
Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr Drug Targets. 2018; 19(14):1696-709. https://doi.org/10.2174/1389450119666180326122831 DOI: https://doi.org/10.2174/1389450119666180326122831
Montoto SS, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020; 7:319. https://doi.org/10.3389/fmolb.2020.587997 DOI: https://doi.org/10.3389/fmolb.2020.587997
Tubtimsri S, Limmatvapirat C, Limsirichaikul S, Akkaramongkolporn P, Inoue Y, Limmatvapirat S. Fabrication and characterization of spearmint oil loaded nanoemulsions as cytotoxic agents against oral cancer cell. Asian J Pharm Sci. 2018; 13(5):425-37. https://doi.org/10.1016/j.ajps.2018.02.003 DOI: https://doi.org/10.1016/j.ajps.2018.02.003
Das A, Edwin AR, Krushnakeerthana R, Bindhu J. Comparative analysis of bioactive compounds and anticancerous activities in leaf and stem extract of Physalis minima. J Nat Remedies. 2020:42-52. https://doi.org/10.18311/jnr/2020/24166 DOI: https://doi.org/10.18311/jnr/2020/24166
Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007; 9:767-76. https://doi.org/10.1007/s12094-007-0138-9 DOI: https://doi.org/10.1007/s12094-007-0138-9
Deng QP, Wang MJ, Zeng X, Chen GG, Huang RY. Effects of glycyrrhizin in a mouse model of lung adenocarcinoma. Cell Physiol Biochem. 2017; 41(4):1383-92. https://doi.org/10.1159/000467897 DOI: https://doi.org/10.1159/000467897
Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971; 93(9):2325-7. https://doi.org/10.1021/ja00738a045 DOI: https://doi.org/10.1021/ja00738a045
Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, Cánovas-Díaz M, de Diego Puente T. A compressive review about Taxol®: History and future challenges. Molecules. 2020; 25(24):5986. https://doi.org/10.3390/molecules25245986 DOI: https://doi.org/10.3390/molecules25245986
Kumaran RS, Muthumary J, Hur BK. Taxol from Phyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J Biosci Bioeng. 2008; 106(1):103-6. https://doi.org/10.1263/jbb.106.103 DOI: https://doi.org/10.1263/jbb.106.103
Kingston DG. Taxol, a molecule for all seasons. Chem Comm. 2001(10):867-80. https://doi.org/10.1039/B100070P DOI: https://doi.org/10.1039/b100070p
Isah T. Anticancer alkaloids from trees: Development into drugs. Phcog Rev. 2016; 10(20):90. https://doi.org/10.4103/0973-7847.194047 DOI: https://doi.org/10.4103/0973-7847.194047
Gowda JI, Nandibewoor ST. Electrochemical behavior of paclitaxel and its determination at glassy carbon electrode. Asian J Pharm Sci. 2014; 9(1):42-9. https://doi.org/10.1016/j.ajps.2013.11.007 DOI: https://doi.org/10.1016/j.ajps.2013.11.007
Kotsakis A, Matikas A, Koinis F, Kentepozidis N, Varthalitis II, Karavassilis V, et al. A multicentre Phase II trial of cabazitaxel in patients with advanced non-small-cell lung cancer progressing after docetaxel-based chemotherapy. Br J Cancer. 2016; 115(7):784-8. https://doi.org/10.1038/bjc.2016.281 DOI: https://doi.org/10.1038/bjc.2016.281
Barbuti AM, Chen ZS. Paclitaxel through the ages of anticancer therapy: Exploring its role in chemoresistance and radiation therapy. Cancers. 2015; 7(4):2360-71. https://doi.org/10.3390/cancers7040897 DOI: https://doi.org/10.3390/cancers7040897
Oudard S, Fizazi K, Sengeløv L, Daugaard G, Saad F, Hansen S, et al. Cabazitaxel versus docetaxel as first-line therapy for patients with metastatic castration-resistant prostate cancer: A randomized Phase III trial — FIRSTANA. J Clin Oncol. 2017; 35(28):3189-97. https://doi.org/10.1200/JCO.2016.72.1068 DOI: https://doi.org/10.1200/JCO.2016.72.1068
Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science. 1993; 260(5105):214-6. https://doi.org/10.1126/science.8097061 DOI: https://doi.org/10.1126/science.8097061
Yuan JI, Jian-Nan BI, Bing YA, Xu-Dong Z. Taxol-producing fungi: A new approach to industrial production of taxol. Chin J Biotechnol. 2006; 22(1):1-6. https://doi.org/10.1016/S1872-2075(06)60001-0 DOI: https://doi.org/10.1016/S1872-2075(06)60001-0
Shakya AK, Naik RR. The chemotherapeutic potentials of compounds isolated from the plant, marine, fungus, and microorganism: Their mechanism of action and prospects. J Trop Med. 2022; 2022. https://doi.org/10.1155/2022/5919453 DOI: https://doi.org/10.1155/2022/5919453
Guenard D, Gueritte-Voegelein F, Potier P. Taxol and taxotere: Discovery, chemistry, and structure-activity relationships. Acc Chem Res. 1993; 26(4):160-7. https://doi.org/10.1021/ar00028a005 DOI: https://doi.org/10.1021/ar00028a005
Kingston DG. Taxol, a molecule for all seasons. Chem Comm. 2001; (10):867-80. https://doi.org/10.1039/B100070P DOI: https://doi.org/10.1039/b100070p
Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem. 2011; 46(1):23-34. https://doi.org/10.1016/j.procbio.2010.09.004 DOI: https://doi.org/10.1016/j.procbio.2010.09.004
Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med. 2013; 4(11):1231. PMID: 24404355; PMCID: PMC3883245.
Chandraprasad MS, Dey A, Swamy MK. Introduction to cancer and treatment approaches. In Paclitaxel 2022 Jan 1 (pp. 1-27). Academic Press. https://doi.org/10.1016/B978-0-323-90951-8.00010-2 DOI: https://doi.org/10.1016/B978-0-323-90951-8.00010-2
Haque A, Rahman MA, Faizi MS, Khan MS. Next generation antineoplastic agents: A review on structurally modified Vinblastine (VBL) analogues. Curr Med Chem. 2018; 25(14):1650-62. https://doi.org/10.2174/0929867324666170502123639 DOI: https://doi.org/10.2174/0929867324666170502123639
Stephens DM, Boucher K, Kander E, Parikh SA, Parry EM, Shadman M, et al. Hodgkin lymphoma arising in patients with chronic lymphocytic leukemia: Outcomes from a large multi-center collaboration. Haematologica. 2021; 106(11):2845. https://doi.org/10.3324/haematol.2020.256388 DOI: https://doi.org/10.3324/haematol.2020.256388
Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F, et al. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett. 2018; 28(17):2816-26. https://doi.org/10.1016/j.bmcl.2018.06.044 DOI: https://doi.org/10.1016/j.bmcl.2018.06.044
Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, et al. Endophytic fungi — Alternative sources of cytotoxic compounds: A review. Front Pharmacol. 2018; 9:309. https://doi.org/10.3389/fphar.2018.00309 DOI: https://doi.org/10.3389/fphar.2018.00309
Ardalani H, Avan A, Ghayour-Mobarhan M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J Phytomed. 2017; 7(4):285. PMID: 28884079; PMCID: PMC5580867.
Cao B, Chen H, Gao Y, Niu C, Zhang Y, Li L. CIP-36, a novel Topoisomerase II-targeting agent, induces the apoptosis of multidrug-resistant cancer cells in vitro. Int J Mol Med. 2015; 35(3):771-6. https://doi.org/10.3892/ijmm.2015.2068 DOI: https://doi.org/10.3892/ijmm.2015.2068
Kumar P, Pal T, Sharma N, Kumar V, Sood H, Chauhan RS. Expression analysis of biosynthetic pathway genes vis-à-vis podophyllotoxin content in Podophyllum hexandrum Royle. Protoplasma. 2015; 252:1253-62. https://doi.org/10.1007/s00709-015-0757-x DOI: https://doi.org/10.1007/s00709-015-0757-x
You Y. Podophyllotoxin derivatives: Current synthetic approaches for new anticancer agents. Curr Pharm Des. 2005; 11(13):1695-717. https://doi.org/10.2174/1381612053764724 DOI: https://doi.org/10.2174/1381612053764724
Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, et al. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol. 2008; 24:1115-21. https://doi.org/10.1007/s11274-007-9582-5 DOI: https://doi.org/10.1007/s11274-007-9582-5
Nadeem M, Ram M, Alam P, Ahmad MM, Mohammad A, Al-Qurainy F, et al. Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res. 2012; 6(10):2493-9. https://doi.org/10.5897/AJMR11.1596 DOI: https://doi.org/10.5897/AJMR11.1596
Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotech. 2006; 122(4):494-510. https://doi.org/10.1016/j.jbiotec.2005.10.015 DOI: https://doi.org/10.1016/j.jbiotec.2005.10.015
Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X, He XR. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol. 2014; 52(10):1237-43. https://doi.org/10.3109/13880209.2014.885061 DOI: https://doi.org/10.3109/13880209.2014.885061
Kusari S, Zühlke S, Spiteller M. Chemometric evaluation of the anti‐cancer pro‐drug podophyllotoxin and potential therapeutic analogues in Juniperus and Podophyllum species. Phytochem Anal. 2011; 22(2):128-43. https://doi.org/10.1002/pca.1258 DOI: https://doi.org/10.1002/pca.1258
Hertzberg RP, Caranfa MJ, Hecht SM. On the mechanism of Topoisomerase I inhibition by camptothecin: Evidence for binding to an enzyme-DNA complex. Biochemist. 1989; 28(11):4629-38. https://doi.org/10.1021/bi00437a018 DOI: https://doi.org/10.1021/bi00437a018
Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985; 260(27):14873-8. https://doi.org/10.1016/S0021-9258(17)38654-4 DOI: https://doi.org/10.1016/S0021-9258(17)38654-4
Blagosklonny MV. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle. 2004; 3(8):1033-40. https://doi.org/10.4161/cc.3.8.1023 DOI: https://doi.org/10.4161/cc.3.8.1023
Oberlies NH, Kroll DJ. Camptothecin and taxol: Historic achievements in natural products research. J Nat Prod. 2004; 67(2):129-35. https://doi.org/10.1021/np030498t DOI: https://doi.org/10.1021/np030498t
Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, et al. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol. 2006; 52(3):189-96. https://doi.org/10.1139/w05-122 DOI: https://doi.org/10.1139/w05-122
Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotech. 2006; 122(4):494-510. https://doi.org/10.1016/j.jbiotec.2005.10.015 DOI: https://doi.org/10.1016/j.jbiotec.2005.10.015
Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients. 2018; 10(10):1553. https://doi.org/10.3390/nu10101553 DOI: https://doi.org/10.3390/nu10101553
Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019; 20(5):1033. https://doi.org/10.3390/ijms20051033 DOI: https://doi.org/10.3390/ijms20051033
Agarwal A, Kasinathan A, Ganesan R, Balasubramanian A, Bhaskaran J, Suresh S, et al. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species–independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr Res. 2018; 51:67-81. https://doi.org/10.1016/j.nutres.2017.12.011 DOI: https://doi.org/10.1016/j.nutres.2017.12.011
Doello K, Ortiz R, Alvarez PJ, Melguizo C, Cabeza L, Prados J. Latest in vitro and in vivo assay, clinical trials and patents in cancer treatment using curcumin: A literature review. Nutr Cancer. 2018; 70(4):569-78. https://doi.org/10.1080/01635581.2018.1464347 DOI: https://doi.org/10.1080/01635581.2018.1464347
Pastorelli D, Fabricio AS, Giovanis P, D’Ippolito S, Fiduccia P, Soldà C, et al. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective Phase II trial. Pharmacol Res. 2018; 132:72-9. https://doi.org/10.1016/j.phrs.2018.03.013 DOI: https://doi.org/10.1016/j.phrs.2018.03.013
Ismail NI, Othman I, Abas F, Lajis NH, Naidu R. Mechanism of apoptosis induced by curcumin in colorectal cancer. Int J Mol Sci. 2019; 20(10):2454. https://doi.org/10.3390/ijms20102454 DOI: https://doi.org/10.3390/ijms20102454
Ahmed K, Zaidi SF, Cui ZG, Zhou D, Saeed SA, Inadera H. Potential proapoptotic phytochemical agents for the treatment and prevention of colorectal cancer. Oncology letters. 2019 Jul 1;18(1):487-98. https://doi.org/10.3892/ol.2019.10349 DOI: https://doi.org/10.3892/ol.2019.10349
Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci. 2017 Jul 5;131(15):1781-99. https://doi.org/10.1042/CS20160935 DOI: https://doi.org/10.1042/CS20160935
Klippstein R, Bansal SS, Al-Jamal KT. Doxorubicin enhances curcumin’s cytotoxicity in human prostate cancer cells in vitro by enhancing its cellular uptake. Int J Pharm. 2016; 514(1):169-75. https://doi.org/10.1016/j.ijpharm.2016.08.003 DOI: https://doi.org/10.1016/j.ijpharm.2016.08.003
Mock CD, Jordan BC, Selvam C. Recent advances of curcumin and its analogues in breast cancer prevention and treatment. RSC Adv. 2015; 5(92):75575-88. https://doi.org/10.1039/C5RA14925H DOI: https://doi.org/10.1039/C5RA14925H
Kumar G, Mittal S, Sak K, Tuli HS. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives. Life Sci. 2016; 148:313-28. https://doi.org/10.1016/j.lfs.2016.02.022 DOI: https://doi.org/10.1016/j.lfs.2016.02.022
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: An "old-age" disease with an "age-old" solution. Cancer Lett. 2008 Aug 18; 267(1):133-64. https://doi.org/10.1016/j.canlet.2008.03.025 DOI: https://doi.org/10.1016/j.canlet.2008.03.025
Zhou DC, Zittoun R, Marie JP. Homoharringtonine: An effective new natural product in cancer chemotherapy. Bull Cancer. 1995; 82(12):987-95. PMID: 8745664.
Meng H, Yang C, Jin J, Zhou Y, Qian W. Homoharringtonine inhibits the AKT pathway and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Leuk Lymphoma. 2008; 49(10):1954-62. https://doi.org/10.1080/10428190802320368 DOI: https://doi.org/10.1080/10428190802320368
Yakhni M, Briat A, El Guerrab A, Furtado L, Kwiatkowski F, Miot-Noirault E, et al. Homoharringtonine, an approved anti-leukemia drug, suppresses triple negative breast cancer growth through a rapid reduction of anti-apoptotic protein abundance. Am J Cancer Res. 2019; 9(5):1043. PMID: 31218111; PMCID: PMC6556597.
Weng TY, Wu HF, Li CY, Hung YH, Chang YW, Chen YL, et al. Homoharringtonine induced immune alteration for an efficient anti-tumor response in mouse models of non-small cell lung adenocarcinoma expressing Kras mutation. Scient Rep. 2018; 8(1):8216. https://doi.org/10.1038/s41598-018-26454-w DOI: https://doi.org/10.1038/s41598-018-26454-w
Skroza N, Bernardini N, Proietti I, Potenza C. Clinical utility of ingenol mebutate in the management of actinic keratosis: Perspectives from clinical practice. Ther Clin Risk Manag. 2018:1879-85. https://doi.org/10.2147/TCRM.S145779 DOI: https://doi.org/10.2147/TCRM.S145779
Ali FR, Wlodek C, Lear JT. The role of ingenol mebutate in the treatment of actinic keratoses. Dermatol Ther. 2012; 2:1-8. https://doi.org/10.1007/s13555-012-0008-4 DOI: https://doi.org/10.1007/s13555-012-0008-4
Bobyr I, Campanati A, Consales V, Giuliodori K, Scalise A, Offidani A. Efficacy, safety and tolerability of field treatment of actinic keratosis with ingenol mebutate 0.015% gel: A single center case series. SpringerPlus. 2016; 5:1-6. https://doi.org/10.1186/s40064-016-2290-6 DOI: https://doi.org/10.1186/s40064-016-2290-6
Rosen RH, Gupta AK, Tyring SK. Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: Rapid lesion necrosis followed by lesion-specific immune response. J Am Acad Dermatol. 2012; 66(3):486-93. https://doi.org/10.1016/j.jaad.2010.12.038 DOI: https://doi.org/10.1016/j.jaad.2010.12.038
Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA. Paclitaxel: What has been done and the challenges remain ahead. Int J Pharm. 2017; 526(1-2):474-95. https://doi.org/10.1016/j.ijpharm.2017.05.016 DOI: https://doi.org/10.1016/j.ijpharm.2017.05.016
Casado P, Zuazua-Villar P, del Valle E, Martínez-Campa C, Lazo PS, Ramos S. Vincristine regulates the phosphorylation of the antiapoptotic protein HSP27 in breast cancer cells. Cancer Lett. 2007; 247(2):273-82. https://doi.org/10.1016/j.canlet.2006.05.005 DOI: https://doi.org/10.1016/j.canlet.2006.05.005
Liu J, Geng G, Liang G, Wang L, Luo K, Yuan J, et al. A novel topoisomerase I inhibitor DIA-001 induces DNA damage mediated cell cycle arrest and apoptosis in cancer cell. Ann Transl Med. 2020; 8(4). https://doi.org/10.21037/atm.2019.12.138 DOI: https://doi.org/10.21037/atm.2019.12.138
Jonsson E, Dhar S, Jonsson B, Nygren P, Graf W, Larsson R. Differential activity of topotecan, irinotecan and SN-38 in fresh human tumour cells but not in cell lines. Eur J Cancer. 2000; 36(16):2120-7. https://doi.org/10.1016/S0959-8049(00)00289-6 DOI: https://doi.org/10.1016/S0959-8049(00)00289-6
Goto K, Ohe Y, Shibata T, Seto T, Takahashi T, Nakagawa K, et al. Combined chemotherapy with cisplatin, etoposide, and irinotecan versus topotecan alone as second-line treatment for patients with sensitive relapsed small-cell lung cancer (JCOG0605): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2016; 17(8):1147-57. https://doi.org/10.1016/S1470-2045(16)30104-8 DOI: https://doi.org/10.1016/S1470-2045(16)30104-8
Seca AM, Pinto DC. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int J Mol Sci. 2018; 19(1):263. https://doi.org/10.3390/ijms19010263 DOI: https://doi.org/10.3390/ijms19010263
Wen G, Qu XX, Wang D, Chen XX, Tian XC, Gao F, et al. Recent advances in design, synthesis and bioactivity of paclitaxel-mimics. Fitoterapia. 2016; 110:26-37. https://doi.org/10.1016/j.fitote.2016.02.010 DOI: https://doi.org/10.1016/j.fitote.2016.02.010
Wang X, Song Y, Su Y, Tian Q, Li B, Quan J, et al. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. Drug Deliv. 2016; 23(4):1092-100. https://doi.org/10.3109/10717544.2015.1027015 DOI: https://doi.org/10.3109/10717544.2015.1027015
Hertzberg RP, Caranfa MJ, Hecht SM. On the mechanism of topoisomerase I inhibition by camptothecin: Evidence for binding to an enzyme-DNA complex. Biochem. 1989; 28(11):4629-38. https://doi.org/10.1021/bi00437a018 DOI: https://doi.org/10.1021/bi00437a018
Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR, Preuss HG. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules. 2020; 25(6):1397. https://doi.org/10.3390/molecules25061397 DOI: https://doi.org/10.3390/molecules25061397
Chen Y, Lu Y, Lee RJ, Xiang G. Nano encapsulated curcumin: and its potential for biomedical applications. Int J Nanomedicine. 2020:3099-120. https://doi.org/10.2147/IJN.S210320 DOI: https://doi.org/10.2147/IJN.S210320
Kanai M, Otsuka Y, Otsuka K, Sato M, Nishimura T, Mori Y, et al. A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin®) in cancer patients. Cancer Chemother Pharmacol. 2013; 71:1521-30. https://doi.org/10.1007/s00280-013-2151-8 DOI: https://doi.org/10.1007/s00280-013-2151-8
Belcaro G, Hosoi M, Pellegrini L, Appendino G, Ippolito E, Ricci A, et al. A controlled study of a lecithinized delivery system of curcumin (Meriva®) to alleviate the adverse effects of cancer treatment. Phytother Res. 2014; 28(3):444-50. https://doi.org/10.1002/ptr.5014 DOI: https://doi.org/10.1002/ptr.5014
Lam SS, Ho ES, He BL, Wong WW, Cher CY, Ng NK, et al. Homoharringtonine (omacetaxine mepesuccinate) as an adjunct for FLT3-ITD acute myeloid leukemia. Sci Transl Med. 2016; 8(359):359ra129. https://doi.org/10.1126/scitranslmed.aaf3735 DOI: https://doi.org/10.1126/scitranslmed.aaf3735
Tzogani K, Nagercoil N, Hemmings RJ, Samir B, Gardette J, Demolis P, et al. The European medicines agency approval of ingenol mebutate (Picato) for the cutaneous treatment of non-hyperkeratotic, non-hypertrophic actinic keratosis in adults: Summary of the scientific assessment of the Committee for Medicinal Products for Human Use (CHMP). Eur J Dermatol. 2014; 24:457-63. https://doi.org/10.1684/ejd.2014.2368 DOI: https://doi.org/10.1684/ejd.2014.2368
Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin Gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol. 2018; 210:296-310. https://doi.org/10.1016/j.jep.2017.08.035 DOI: https://doi.org/10.1016/j.jep.2017.08.035
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci. 2020; 21(5):1744. https://doi.org/10.3390/ijms21051744b DOI: https://doi.org/10.3390/ijms21051744
Schulze J, Melzer L, Smith L, Teschke R. Green tea and its extracts in cancer prevention and treatment. Beverages. 2017; 3(1):17. https://doi.org/10.3390/beverages3010017 DOI: https://doi.org/10.3390/beverages3010017
Ho HC, Huang CC, Lu YT, Yeh CM, Ho YT, Yang SF, et al. Epigallocatechin‐3‐gallate inhibits migration of human nasopharyngeal carcinoma cells by repressing MMP‐2 expression. J Cell Physiol. 2019; 234(11):20915-24. https://doi.org/10.1002/jcp.28696 DOI: https://doi.org/10.1002/jcp.28696
Safwat MA, Kandil BA, Elblbesy MA, Soliman GM, Eleraky NE. Epigallocatechin-3-gallate-loaded gold nanoparticles: Preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice. Pharmaceuticals. 2020; 13(9):254. https://doi.org/10.3390/ph13090254 DOI: https://doi.org/10.3390/ph13090254
Zhang L, Chen W, Tu G, Chen X, Lu Y, Wu L, et al. Enhanced chemotherapeutic efficacy of PLGA-encapsulated Epigallocatechin Gallate (EGCG) against human lung cancer. Int J Nanomedicine. 2020:4417-29. https://doi.org/10.2147/IJN.S243657 DOI: https://doi.org/10.2147/IJN.S243657
Mukund V, Mukund D, Sharma V, Mannarapu M, Alam A. Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol. 2017; 119:13-22. https://doi.org/10.1016/j.critrevonc.2017.09.004 DOI: https://doi.org/10.1016/j.critrevonc.2017.09.004
Hsiao YC, Peng SF, Lai KC, Liao CL, Huang YP, Lin CC, et al. Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL‐60 cancer cell xenograft growth in vivo. Environ Toxicol. 2019; 34(4):443-56. https://doi.org/10.1002/tox.22698 DOI: https://doi.org/10.1002/tox.22698
Gu Y, Zhu CF, Iwamoto H, Chen JS. Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J Gastroenterol. 2005; 11(41):6512. https://doi.org/10.3748/wjg.v11.i41.6512 DOI: https://doi.org/10.3748/wjg.v11.i41.6512
Eckelbarger JD, Wilmot JT, Epperson MT, Thakur CS, Shum D, Antczak C, et al. Synthesis of antiproliferative Cephalotaxus esters and their evaluation against several human hematopoietic and solid tumor cell lines: uncovering differential susceptibilities to multidrug resistance. Chem. 2008; 14(14):4293-306. https://doi.org/10.1002/chem.200701998 DOI: https://doi.org/10.1002/chem.200701998
Kantarjian HM, Talpaz M, Santini V, Murgo A, Cheson B, O’Brien SM. Homoharringtonine: History, current research, and future directions. Cancer. 2001; 92(6):1591-605. https://doi.org/10.1002/1097-0142(20010915)92:6<1591::AID-CNCR1485>3.0.CO;2-U DOI: https://doi.org/10.1002/1097-0142(20010915)92:6<1591::AID-CNCR1485>3.0.CO;2-U
Li J, Gao J, Liu A, Liu W, Xiong H, Liang C, et al. Homoharringtonine - Based Induction regimen improved the remission rate and survival rate in chinese childhood AML: A report from the CCLG-AML 2015 protocol study. J Clin Oncol. 2023:JCO-22. https://creativecommons.org/licenses/by-nc-nd/4.0/ DOI: https://doi.org/10.1200/JCO.22.02836
Wei W, Huang S, Ling Q, Mao S, Qian Y, Ye W, et al. Homoharringtonine is synergistically lethal with BCL-2 inhibitor APG-2575 in acute myeloid leukemia. J Transl Med. 2022; 20(1):299. https://doi.org/10.1186/s12967-022-03497-2 DOI: https://doi.org/10.1186/s12967-022-03497-2
Weng TY, Wu HF, Li CY, Hung YH, Chang YW, Chen YL, et al. Homoharringtonine induced immune alteration for an efficient anti-tumor response in mouse models of non-small cell lung adenocarcinoma expressing Kras mutation. Sci Rep. 2018; 8(1):8216. https://doi.org/10.1038/s41598-018-26454-w DOI: https://doi.org/10.1038/s41598-018-26454-w
Varshney S, Shankar K, Beg M, Balaramnavar VM, Mishra SK, Jagdale P, et al. Rohitukine inhibits in vitro adipogenesis arresting mitotic clonal expansion and improves dyslipidemia in vivo [S]. J Lipid Res. 2014; 55(6):1019-32. https://doi.org/10.1194/jlr.M039925 DOI: https://doi.org/10.1194/jlr.M039925
Kumara PM, Soujanya KN, Ravikanth G, Vasudeva R, Ganeshaiah KN, Shaanker RU. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook. f and Amoora rohituka (Roxb). Wight and Arn. Phytomedicine. 2014; 21(4):541-6. https://doi.org/10.1016/j.phymed.2013.09.019 DOI: https://doi.org/10.1016/j.phymed.2013.09.019
Karatoprak GŞ, Akkol EK, Genç Y, Bardakcı H, Yücel Ç, Sobarzo-Sánchez E. Combretastatins: An overview of structure, probable mechanisms of action and potential applications. Molecules. 2020; 25(11):2560. https://doi.org/10.3390/molecules25112560 DOI: https://doi.org/10.3390/molecules25112560
Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol. 2002; 83(1):21-38. https://doi.org/10.1046/j.1365-2613.2002.00211.x DOI: https://doi.org/10.1046/j.1365-2613.2002.00211.x
Marrelli M, Conforti F, Statti GA, Cachet X, Michel S, Tillequin F, et al. Biological potential and structure-activity relationships of most recently developed vascular disrupting agents: An overview of new derivatives of natural combretastatin A-4. Current medicinal chemistry. 2011; 18(20):3035-81. https://doi.org/10.2174/092986711796391642 DOI: https://doi.org/10.2174/092986711796391642
Kupchan SM, Yokoyama N. The structure, configuration and synthesis of thalicarpine, a novel dimeric aporphine-benzylisoquinoline alkaloid. J Am Chem Soc. 1963; 85(9):1361-2. https://doi.org/10.1021/ja00892a041 DOI: https://doi.org/10.1021/ja00892a041
Xu W, Huang Z, Ji X, Lumb JP. Catalytic aerobic cross-dehydrogenative coupling of phenols and catechols. ACS Catalysis. 2019; 9(5):3800-10. https://doi.org/10.1021/acscatal.8b04443 DOI: https://doi.org/10.1021/acscatal.8b04443
Allen LM, Creaven PJ. Binding of a new antitumor agent, thalicarpine, to DNA. J Pharm Sci. 1974; 63(3):474-5. https://doi.org/10.1002/jps.2600630343 DOI: https://doi.org/10.1002/jps.2600630343
Frédérich M, Bentires-Alj M, Tits M, Angenot L, Greimers R, Gielen J, et al. Isostrychnopentamine, an indolomonoterpenic alkaloid from Strychnos usambarensis, induces cell cycle arrest and apoptosis in human colon cancer cells. J Pharmacol Exp Ther. 2003; 304(3):1103-10. https://doi.org/10.1124/jpet.102.044867 DOI: https://doi.org/10.1124/jpet.102.044867
Nistor I, Cao M, Debrus B, Lebrun P, Lecomte F, Rozet E, et al. Application of a new optimization strategy for the separation of tertiary alkaloids extracted from Strychnos usambarensis leaves. J Pharm Biomed Anal. 2011; 56(1):30-7. https://doi.org/10.1016/j.jpba.2011.04.027 DOI: https://doi.org/10.1016/j.jpba.2011.04.027
Liu W, Wang M, Guo Z, He Y, Jia H, He J, et al. Inspired by bis-β-carboline alkaloids: Construction and antitumor evaluation of a novel bis-β-carboline scaffold as potent antitumor agents. Bioorg Chem. 2023; 133:106401. https://doi.org/10.1016/j.bioorg.2023.106401 DOI: https://doi.org/10.1016/j.bioorg.2023.106401
Belmont P, Bosson J, Godet T, Tiano M. Acridine and acridone derivatives, anticancer properties and synthetic methods: Where are we now?. Anticancer Agents Med Chem. 2007; 7(2):139-69. https://doi.org/10.2174/187152007780058669 DOI: https://doi.org/10.2174/187152007780058669
Fujiwara M, Okamoto M, Okamoto M, Watanabe M, Machida H, Shigeta S, et al. Acridone derivatives are selective inhibitors of HIV-1 replication in chronically infected cells. Antivir Res. 1999; 43(3):189-99. https://doi.org/10.1016/S0166-3542(99)00045-5 DOI: https://doi.org/10.1016/S0166-3542(99)00045-5
Sepúlveda CS, Fascio ML, García CC, D’Accorso NB, Damonte EB. Acridones as antiviral agents: Synthesis, chemical and biological properties. Curr Med Chem. 2013; 20(19):2402-14. https://doi.org/10.1002/chin.201343237 DOI: https://doi.org/10.2174/0929867311320190002
Dalton LK, Demerac S, Elmes BC, Loder JW, Swan JM, Teitei T. Synthesis of the tumour-inhibitory alkaloids, ellipticine, 9-methoxyellipticine, and related pyrido [4, 3-b] carbazoles. Aust J Chem. 1967; 20(12):2715-27. https://doi.org/10.1071/CH9672715 DOI: https://doi.org/10.1071/CH9672715
Andrews WJ, Panova T, Normand C, Gadal O, Tikhonova IG, Panov KI. Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription. J Biol Chem. 2013; 288(7):4567-82. https://doi.org/10.1074/jbc.M112.411611 DOI: https://doi.org/10.1074/jbc.M112.411611
Krishna PM, Knv R, Banji D. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev Bras Farmacogn. 2012; 22:1145-54. https://doi.org/10.1590/S0102-695X2012005000043 DOI: https://doi.org/10.1590/S0102-695X2012005000043
Luo C, Zhong HJ, Zhu LM, Wu XG, Ying JE, Wang XH, et al. Inhibition of matrine against gastric cancer cell line MNK45 growth and its anti-tumor mechanism. Mol Biol Rep. 2012; 39:5459-64. https://doi.org/10.1007/s11033-011-1346-5 DOI: https://doi.org/10.1007/s11033-011-1346-5
Li D, Wang G, Jin G, Yao K, Zhao Z, Bie L, et al. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. Int J Mol Med. 2019; 43(1):630-40. https://doi.org/10.3892/ijmm.2018.3969 DOI: https://doi.org/10.3892/ijmm.2018.3969
Paller CJ, Zhou XC, Heath EI, Taplin ME, Mayer T, Stein MN, et al. Muscadine grape skin extract (MPX) in men with biochemically recurrent prostate cancer: A randomized, multicenter, placebo-controlled clinical trial. Clin Cancer Res. 2018; 24(2):306-15. https://doi.org/10.1158/1078-0432.CCR-17-1100 DOI: https://doi.org/10.1158/1078-0432.CCR-17-1100
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine. 2018:1569-83. http://dx.doi.org/10.2147/IJN.S155593 DOI: https://doi.org/10.2147/IJN.S155593
Aditya NP, Ko S. Solid Lipid Nanoparticles (SLNs): Delivery vehicles for food bioactives. RSC Adv. 2015; 5(39):30902-11. https://doi.org/10.1039/C4RA17127F DOI: https://doi.org/10.1039/C4RA17127F
Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm. 2014; 86(1):7-22. https://doi.org/10.1016/j.ejpb.2013.08.013 DOI: https://doi.org/10.1016/j.ejpb.2013.08.013
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019; 12(7):908-31. https://doi.org/10.1016/j.arabjc.2017.05.011 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
Baig N, Kammakakam I, Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021; 2(6):1821-71. https://doi.org/10.1039/D0MA00807A DOI: https://doi.org/10.1039/D0MA00807A
Duan H, Wang T, Su Z, Pang H, Chen C. Recent progress and challenges in plasmonic nanomaterials. Nanotechnol Rev. 2022; 11(1):846-73. https://doi.org/10.1515/ntrev-2022-0039 DOI: https://doi.org/10.1515/ntrev-2022-0039
Ruiz ME, Montoto SS. Routes of drug administration. ADME Processes Pharm Sci. Routes of drug administration; 2018. p. 97-133. https://doi.org/10.1007/978-3-319-99593-9_6 DOI: https://doi.org/10.1007/978-3-319-99593-9_6
Tan ME, He CH, Jiang W, Zeng C, Yu N, Huang W, et al. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia–reperfusion injury in rats. Int J Nanomedicine. 2017:3253-65. https://doi.org/10.2147/IJN.S131893 DOI: https://doi.org/10.2147/IJN.S131893
Nunes S, Madureira AR, Campos D, Sarmento B, Gomes AM, Pintado M, et al. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications. Crit Rev Food Sci Nutr. 2017; 57(9):1863-73. https://doi.org/10.1080/10408398.2015.1031337 DOI: https://doi.org/10.1080/10408398.2015.1031337