Jasminum sambac (L.) Alleviates Rheumatoid Arthritis: Synergistic or Complementary Action? A Phytochemical and Pharmacological Investigation
DOI:
https://doi.org/10.18311/jnr/2024/41897Keywords:
Adjuvant Arthritis, CT Scan, Histological Studies, HPTLC, InflammationAbstract
Background: Jasminum sambac (L.) Aiton (JS) has promising anti-arthritic activity and is traditionally considered an analgesic. Although JS has been reported to exhibit multiple therapeutic values, its role in Rheumatoid Arthritis (RA) is under extensive research. The biological effect of β-sitosterol was evident in crude extracts and isolated fractions for various inflammatory disorders. However, it is still unclear if β-sitosterol is the only chemical constituent that contributes most to the reported anti-arthritic activity of JS. Objectives: The current study was designed to ascertain the role of β-sitosterol present in the ethanol extract of JS on Complete Freund’s Adjuvant (CFA) induced Adjuvant-Induced Arthritis (AIA) model in Wistar rats. Methodology: The rats were injected with CFA and treatment (days 0 to 28) with vehicle (control), ethanol extract of JS (JSE 400 mg/kg) and β- sitosterol (2 mg/kg). The estimated parameters were clinical signs, oxidative biomarkers, inflammatory markers, and ankle joint destruction, using the CT scan technique. Results: The chronic JSE treatment significantly decreased swelling and reduced the severity of arthritis. Myeloperoxidase activity, an inflammatory marker, decreased while the free radical scavenging activity was significantly elevated. However, β-sitosterol failed to alleviate inflammation and scavenge free radicals in arthritic rats. Similarly, extensive osteopenia and erosion were displayed in β-sitosterol treated rats whereas JSE treatment has marked improvement in bone structure restoration. Conclusion: The outcome demonstrates anti-arthritic activity of JSE but β-sitosterol failed to exhibit similar efficacy on its own. Interestingly, HPTLC analysis detected β-sitosterol in JSE but individual β-sitosterol lacked therapeutic outcome of JSE. It suggests that the potent activity of JS cannot be attributed to β-sitosterol alone but other vital chemical constituent/s may contribute to the observed alleviation of rheumatoid arthritis by JSE in rats.
Downloads
Metrics
Downloads
Published
How to Cite
License
Copyright (c) 2024 Rajat Rathore, Avinash Mandloi, Manisha Kawadkar, Vipin Dhote, M. K. Mohan Maruga Raja (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-05-03
Published 2024-06-30
References
Shastri NV, Dhamankar VS, Akarte NR. Biosynthesis of some water soluble vitamins during germination of Dolichos lablab (bitter variety). Indian J Nutr Diet.1975; 12:238-42.
Sharma PV. Dravyaguna-Vijnana Vol. 2, Chaukhambha Bharti Academy: Varanasi; 1981. p. 626-28.
Warrier PK, Nambiar VPK, Ramankutty C. Indian medicinal plants: A compendium of 500 species, Vol. 3; Madras: Orient Longman Ltd.; 1995; p. 255-57.
Preedy VK. Essential oils in food preservations, flavor and safety; Cambridge: Academic Press; 2016. p. 487-91.
Abdoul-Latif F, Edou P, Eba F, Mohamed N, Ali A, Djama S, et al. Antimicrobial and antioxidant activities of essential oil and methanol extract of Jasminum sambac from Djibouti. African J Plant Sci. 2010; 4:038-43.
Rahman MA, Hasan MS, Hossain MA, Biswas NN. Analgesic and cytotoxic activities of Jasminum sambac (L.) Aiton. Pharmacologyonline. 2011; 1:124-31.
Sengar N, Joshi A, Prasad SK, Hemalatha S. Anti-inflammatory, analgesic and antipyretic activities of standardized root extract of Jasminum sambac. J Ethnopharmacol. 2015; 160:140-8. https://doi.org/10.1016/j.jep.2014.11.039 PMid:25479154
Dhote V, Dangi U, Mandloi AS, Soni M, Shukla DN, Kawadkar M, et al. Preferential cyclooxygenase inhibition by Jasminum sambac: A possible relationship with potent anti-arthritic activity. J Tradit Complement Med. 2020; 11:217-27. https://doi.org/10.1016/j.jtcme.2020.04.002 PMid:34012868 PMCid:PMC8116718
Fattahi MJ, Mirshafiey A. Prostaglandins and rheumatoid arthritis. Arthritis. 2012; 2012:239310. https://doi.org/10.1155/2012/239310 PMid:23193470 PMCid:PMC3502782
El-Hawary SS, El-Hefnawy HM, Osman SM, Mostafa ES, Mokhtar FA, El-Raey MA. Chemical profile of two Jasminum sambac L.(Ait) cultivars cultivated in Egypt-their mediated silver nanoparticles synthesis and selective cytotoxicity. Int J Appl Pharm. 2019; 11:154-64. https://doi.org/10.22159/ijap.2019v11i6.33646
Milani GB, Camponogara C, Piana M, Silva CR, Oliveira SM. Cariniana domestica fruit peels present topical anti-inflammatory efficacy in a mouse model of skin inflammation. Naunyn Schmiedebergs Arch Pharmacol. 2019: 392:513-28. https://doi.org/10.1007/s00210-018-1594-1 PMid:30617548
Mahmoud TN, El-Maadawy WH, Kandil ZA, Khalil H, El-Fiky NM, El Alfy TSMA. Canna x generalis L.H. Bailey rhizome extract ameliorates dextran sulfate sodium-induced colitis via modulating intestinal mucosal dysfunction, oxidative stress, inflammation, and TLR4/NF-ҡB and NLRP3 inflammasome pathways. J Ethnopharmacol. 2021: 269:113670. https://doi.org/10.1016/j.jep.2020.113670 PMid:33301917
Kasirzadeh S, Ghahremani MH, Setayesh N, Jeivad F, Shadboorestan A, Taheri A, et al. β-Sitosterol alters the inflammatory response in CLP rat model of sepsis by modulation of NFκB signaling. Biomed Res Int. 2021: 5535562. https://doi.org/10.1155/2021/5535562 PMid:33997001 PMCid:PMC8105092
Zhang X, Shen T, Zhou X, Tang X, Gao R, Xu L, et al. Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer. Sci Rep. 2020; 10:15730. https://doi.org/10.1038/s41598-020-72797-8 PMid:32978480 PMCid:PMC7519149
Mizushima Y, Kobayashi M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J Pharm Pharmacol. 1968; 20:169-73. https://doi.org/10.1111/j.2042-7158.1968.tb09718.x PMid:4385045
Sakat S, Tupe P, Hule A, Juvekar A. Anti-inflammatory potential of flavonoid fraction of Tamarindus indica Linn (seeds). Planta Med. 2010: 76:SL_20. https://doi.org/10.1055/s-0030-1264258
Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN. Membrane stabilizing activity — A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia. 1999: 70:251-7. https://doi.org/10.1016/S0367-326X(99)00030-1
Snekhalatha U, Anburajan M, Venkatraman B, Menaka M. Evaluation of complete Freund’s adjuvant-induced arthritis in a Wistar rat model. Comparison of thermography and histopathology. Z Rheumatol. 2013: 72:375-82. https://doi.org/10.1007/s00393-012-1083-8 PMid:23208192
Wang JH, Shih KS, Liou JP, Wu YW, Chang AS, Wang KL, et al. Anti-arthritic effects of magnolol in human interleukin 1β-stimulated fibroblast-like synoviocytes and in a rat arthritis model. PLoS One. 2012: 7:e31368. https://doi.org/10.1371/journal.pone.0031368 PMid:22359588 PMCid:PMC3281074
Eisen V, Loveday C. Effects of salicylates on blood changes in mycoplasma arthritis in rats. Br J Pharmacol. 1973: 47:272-81. https://doi.org/10.1111/j.1476-5381.1973.tb08325.x PMid:4722043 PMCid:PMC1776540
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011; 7:33-42. https://doi.org/10.1038/nrrheum.2010.196 PMid:21119608
Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974: 47:469-74. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x PMid:4215654
Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979; 582:67-78.
Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990; 186:421-31. https://doi.org/10.1016/0076-6879(90)86135-I PMid:2233309
Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Investigat Dermatol. 1982; 78:206-9. https://doi.org/10.1111/1523-1747.ep12506462 PMid:6276474
Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193:265-75. PMID: 14907713. https://doi.org/10.1016/S0021-9258(19)52451-6 PMid:14907713
Diekhoff T, Engelhard N, Fuchs M, Pumberger M, Putzier M, Mews J, et al. Single-source dual-energy computed tomography for the assessment of bone marrow oedema in vertebral compression fractures: A prospective diagnostic accuracy study. Eur Radiol. 2019; 29:31-9. https://doi.org/10.1007/s00330-018-5568-y PMid:29948088
Hao J, Han W, Huang S, Xue B, Deng X. Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep Purif Technol. 2002; 28:191-6. https://doi.org/10.1016/S1383-5866(02)00043-6
Wright CW, Linley PA, Brun R, Wittlin S, Hsu E. Ancient Chinese methods are remarkably effective for the preparation of artemisinin-rich extracts of Qing Hao with potent antimalarial activity. Molecules. 2010; 15:804-12. https://doi.org/10.3390/molecules15020804 PMid:20335947 PMCid:PMC6257115
Williamson EM. Synergy and other interactions in phytomedicines. Phytomed. 2001; 8:400-9. https://doi.org/10.1078/0944-7113-00060 PMid:11695885
Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomed. 2009; 16:97-110. https://doi.org/10.1016/j.phymed.2008.12.018 PMid:19211237
Bloxham E, Vagadia V, Scott K. Anaemia in rheumatoid arthritis: Can we afford to ignore it? Postgrad Med J. 2011; 87:596-600. https://doi.org/10.1136/pgmj.2011.117507 PMid:21659451
Scott DL. Biologics-based therapy for the treatment of rheumatoid arthritis. Clin Pharmacol Ther. 2012; 91:30-43. https://doi.org/10.1038/clpt.2011.278 PMid:22166850
Joe B, Griffiths MM, Remmers EF, Wilder RL. Animal models of rheumatoid arthritis and related inflammation. Curr Rheumatol Rep. 1999; 1:139-48. https://doi.org/10.1007/s11926-999-0011-7 PMid:11123028
Niazi SGA, Uttra AM, Qaiser MN, Ahsan H. Appraisal of anti-arthritic and nephroprotective potential of Cuscuta reflexa. Pharm Biol. 2017; 55:792-8. https://doi.org/10.1080/13880209.2017.1280513 PMid:28103731 PMCid:PMC6130659
Gupta A, Singh S. Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharm Biol. 2014; 52:308-20. https://doi.org/10.3109/13880209.2013.835325 PMid:24188460
Tatiya AU, Saluja AK, Kalaskar MG, Surana SJ, Patil PH. Evaluation of analgesic and anti-inflammatory activity of Bridelia retusa (Spreng) bark. J Tradit Complement Med. 2017; 7:441-51. https://doi.org/10.1016/j.jtcme.2016.12.009 PMid:29034192 PMCid:PMC5634739
Akhtar G, Shabbir A. Urginea indica attenuated rheumatoid arthritis and inflammatory paw edema in diverse animal models of acute and chronic inflammation. J Ethnopharmacol. 2019; 238:111864. https://doi.org/10.1016/j.jep.2019.111864 PMid:30970284
Hitchon CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004; 6:265-78. https://doi.org/10.1186/ar1447 PMid:15535839 PMCid:PMC1064874
Yoshikawa T, Tanaka H, Kondo M. The increase of lipid peroxidation in rat adjuvant arthritis and its inhibition by superoxide dismutase. Biochem Med. 1985; 33:320-26. https://doi.org/10.1016/0006-2944(85)90006-7 PMid:4015632
Widowati W, Janeva WB, Nadya S, Amalia A, Arumwardana S, Kusuma HS, Arinta Y. Antioxidant and antiaging activities of Jasminum sambac extract, and its compounds. J Rep Pharm Sci. 2018; 7:270-85. https://doi.org/10.4103/2322-1232.254804
Bhangale J, Patel R, Acharya S, Chaudhari K. Preliminary studies on anti-inflammatory and analgesic activities of Jasminum sambac (L.) Aiton in experimental animal models. Am J Pharm Tech Res. 2012; 2:1-10.
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, et al. Structural insights into pyrazoles as agents against anti-inflammatory and related disorders. Chemistry Select. 2022; 7:e202104429. https://doi.org/10.1002/slct.202104429
McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017; 389:2328-37. https://doi.org/10.1016/S0140-6736(17)31472-1 PMid:28612747
Lee SW, Greve JM, Leaffer D, Lollini L, Bailey P, Gold GE, et al. Early findings of small-animal MRI and small-animal computed tomography correlate with histological changes in a rat model of rheumatoid arthritis. NMR Biomed. 2008; 21:527-36. https://doi.org/10.1002/nbm.1225 PMid:18023077
Kalaiselvi M, Narmadha R, Ragavendran P, Vidya B, Gomathi D, Raj CA, et al. Chemopreventive effect and HPTLC fingerprinting analysis of Jasminum sambac (L.) Ait. extract against DLA-induced lymphoma in experimental animals. Appl Biochem Biotechnol. 2013; 169:1098-108. https://doi.org/10.1007/s12010-012-0045-6 PMid:23306882
Zeng LH, Hu M, Yan YM, Lu Q, Cheng YX. Compounds from the roots of Jasminum sambac. J Asian Nat Prod Res. 2012; 14:1180-5. https://doi.org/10.1080/10286020.2012.738675 PMid:23134371
Zhang YJ, Liu YQ, Pu XY, Yang CR. Iridoidal glycosides from Jasminum sambac. Phytochem. 1995; 38:899-903. https://doi.org/10.1016/0031-9422(94)E0200-C
Sabharwal S, Aggarwal S. Preliminary phytochemical investigation and wound healing activity of Jasminum sambac (Linn) Ait. (Oleaceae) leaves. Int J Pharmacogn Phytochem Res. 2012; 4:146-50.