Identification of Flavonoids-based HITS to Inhibit GSK3β Activity: An In Silico and In Vitro Analysis
DOI:
https://doi.org/10.18311/jnr/2024/43768Keywords:
Cytotoxicity, Hesperetin, Oxygen-Glucose Deprivation, Neuroblastoma, Valine 135Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a protein kinase with two isoforms, alpha and beta. GSK-3β, specifically, is found in nervous tissue and has been linked to the development of various human diseases. Aim: This study aimed to investigate the potential of flavonoids as inhibitors of GSK-3β using in silico and in vitro analyses. Methods: Schrodinger Maestro software was used for in silico molecular docking simulations to assess the interaction between flavonoids (ligands) and GSK-3β (target protein). In vitro cytotoxicity studies were performed on Rat L6 skeletal muscle cells to determine the safety of the selected flavonoids. Additionally, the neuroprotective effects of the flavonoids were evaluated using an oxygen-glucose deprivation model on SHSY 5Y neuroblastoma cells. Results: The in silico analysis revealed that all the studied flavonoids interacted with valine 135, a key amino acid for GSK-3β inhibition. Furthermore, the in vitro studies showed that the selected flavonoids were safe up to a concentration of 30 μM in rat L6 cells. Among the tested flavonoids, hesperetin, a flavanone, demonstrated the most potent neuroprotective effect in the SHSY 5Y cell line, with an IC50 value of 13.30 μM. Conclusion: Hesperetin, a flavanone, emerged as the most promising candidate among the tested flavonoids for further investigation as a potential GSK-3β inhibitor with neuroprotective properties.
Downloads
Metrics
Downloads
Published
How to Cite
License
Copyright (c) 2024 Muthiah Ramanathan, Vijayalakshmi Chinniah, S. E. Maida Engels (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-06-24
Published 2024-07-31
References
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25(22):5243. https://doi.org/10.3390/molecules25225243. PMID: 33187049; PMCID: PMC7697716. DOI: https://doi.org/10.3390/molecules25225243
Nardarajah D. Hesperidin-A short review. Research J Pharm Tech. 2014; 7(1):78-80.
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017; 8(3):423-35. https://doi.org/10.3945/an.116.012948. PMID: 28507008; PMCID: PMC5421117. DOI: https://doi.org/10.3945/an.116.012948
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The flavonoid biosynthesis network in plants. Int J Mol Sci. 2021; 22(23):12824. https://doi.org/10.3390/ijms222312824. PMID: 34884627; PMCID: PMC8657439. DOI: https://doi.org/10.3390/ijms222312824
Tapas A, Sakarkar D, Kakde R. The chemistry and biology of bioflavonoids. Research J Pharm Tech. 2008; 1(3):132-43.
Azuma K, Ippoushi K, Ito H, Higashio H, Terao J. Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. J Agric Food Chem. 2002; 50(6):1706-12. https://doi.org/10.1021/jf0112421. PMID: 11879062. DOI: https://doi.org/10.1021/jf0112421
Oliveira EJ, Watson DG, Grant MH. Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma. Xenobiotica. 2002; 32(4):279-87. https://doi.org/10.1080/00498250110107886. PMID: 12028662. DOI: https://doi.org/10.1080/00498250110107886
Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Abin-Carriquiry JA, Costa G, et al. Neuroprotection by flavonoids. Braz J Med Biol Res. 2003; 36(12):1613-20. https://doi.org/10.1590/s0100-879x2003001200002. PMID: 14666245. DOI: https://doi.org/10.1590/S0100-879X2003001200002
Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980; 107(2):519-27. https://doi.org/10.1111/j.1432-1033.1980.tb06059.x. PMID: 6249596. DOI: https://doi.org/10.1111/j.1432-1033.1980.tb06059.x
Perez-Costas E, Gandy JC, Melendez-Ferro M, Roberts RC, Bijur GN. Light and electron microscopy study of glycogen synthase kinase-3beta in the mouse brain. PLoS One. 2010; 5(1):e8911. https://doi.org/10.1371/journal.pone.0008911. PMID: 20111716; PMCID: PMC2811740. DOI: https://doi.org/10.1371/journal.pone.0008911
Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990; 9(8):2431-8. https://doi.org/10.1002/j.1460-2075.1990.tb07419.x. PMID: 2164470; PMCID: PMC552268. DOI: https://doi.org/10.1002/j.1460-2075.1990.tb07419.x
Ferrer I, Barrachina M, Puig B. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. 2002; 104(6):583-91. https://doi.org/10.1007/s00401-002-0587-8. PMID: 12410379. DOI: https://doi.org/10.1007/s00401-002-0587-8
Pandey GN, Dwivedi Y, Rizavi HS, Teppen T, Gaszner GL, Roberts RC, et al. GSK-3beta gene expression in human postmortem brain: regional distribution, effects of age and suicide. Neurochem Res. 2009; 34(2):274-85. https://doi.org/10.1007/s11064-008-9770-1. PMID: 18584322. DOI: https://doi.org/10.1007/s11064-008-9770-1
Darshit BS, Balaji B, Rani P, Ramanathan M. Identification and in vitro evaluation of new leads as selective and competitive glycogen synthase kinase-3β inhibitors through ligand and structure-based drug design. J Mol Graph Model. 2014; 53:31-47. https://doi.org/10.1016/j.jmgm.2014.06.013. PMID: 25064440. DOI: https://doi.org/10.1016/j.jmgm.2014.06.013
Reddy R, Venkateswarulu TC, Babu JD, Devi SN. Homology modelling, simulation and docking studies of tau-protein kinase. Research J Pharm Tech. 2014; 7(3):376-88.
Busciglio J, Lorenzo A, Yeh J, Yankner BA. Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron. 1995; 14(4):879-88. https://doi.org/10.1016/0896-6273(95)90232-5. PMID: 7718249. DOI: https://doi.org/10.1016/0896-6273(95)90232-5
Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K. Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc Natl Acad Sci USA. 1993; 90(16):7789-93. https://doi.org/10.1073/pnas.90.16.7789. PMID: 8356085; PMCID: PMC47228. DOI: https://doi.org/10.1073/pnas.90.16.7789
Alvarez G, Muñoz-Montaño JR, Satrústegui J, Avila J, Bogónez E, Díaz-Nido J. Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett. 1999; 453(3):260-4. https://doi.org/10.1016/s0014-5793(99)00685-7. PMID: 10405156. DOI: https://doi.org/10.1016/S0014-5793(99)00685-7
Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000; 63(7):1035-42. https://doi.org/10.1021/np9904509. PMID: 10924197. DOI: https://doi.org/10.1021/np9904509
Alanbaki AA, AL-Mayali HM, AL-Mayali HK. Ameliorative effect of quercetin and hesperidin on antioxidant and histological changes in the testis of etoposide-induced adult male rats. Research J Pharm Tech. 2018; 11(2):564-74. https://doi.org/10.5958/0974-360X.2018.00105.1. DOI: https://doi.org/10.5958/0974-360X.2018.00105.1
Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: A review. Molecules. 2022; 27(9):2901. https://doi.org/10.3390/molecules27092901. PMID: 35566252; PMCID: PMC9100260. DOI: https://doi.org/10.3390/molecules27092901
Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol. 2018; 14:465-73. https://doi.org/10.1016/j.redox.2017.10.015. PMID: 29080525; PMCID: PMC5680520. DOI: https://doi.org/10.1016/j.redox.2017.10.015
Bhat R, Xue Y, Berg S, Hellberg S, Ormö M, Nilsson Y, et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem. 2003; 278(46):45937-45. https://doi.org/10.1074/jbc.M306268200. PMID: 12928438. DOI: https://doi.org/10.1074/jbc.M306268200
Carter YM, Kunnimalaiyaan S, Chen H, Gamblin TC, Kunnimalaiyaan M. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth. Cancer Biol Ther. 2014; 15(5):510-5. https://doi.org/10.4161/cbt.28015. PMID: 24521712; PMCID: PMC4026073. DOI: https://doi.org/10.4161/cbt.28015
Schrödinger LLC. Schrödinger release 2021-1: protein preparation wizard. Epic Impact Prime. New York: Schrödinger LLC; 2021.
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004; 47(7):1750-9. https://doi.org/10.1021/jm030644s. PMID: 15027866. DOI: https://doi.org/10.1021/jm030644s
Reddy SCH, Reddy SKG, Mahto MK, Kunala P, Kanth CR. In silico design and discovery of some novel ache inhibitors for the treatment of Alzheimer’s disorder. Research J Pharm and Tech. 2012; 5(3):424-7.
Malathi R, Dsouza V, Puja, Rithika R, Sneha P. Molecular docking of fisetin as a multi-target drug in the treatment of Alzheimer’s disease. Res J Pharm Tech. 2023; 16(12):5813-7. https://doi.org/10.52711/0974-360X.2023.00941 DOI: https://doi.org/10.52711/0974-360X.2023.00941
Sawhney SK, Narayan C, Mishra A, Singh M, Kaur A. Molecular docking, ADME and toxicity study of Dibenzo-α-pyrone derivatives for GABA and NMDA receptors for their antiepileptic activity. Res J Pharm Tech. 2024; 17(1):340-6. https://doi.org/10.52711/0974-360X.2024.00053 DOI: https://doi.org/10.52711/0974-360X.2024.00053
Kesavan K, Jayanthi S. Structure-based virtual screening and molecular dynamics studies to identify novel APE1 inhibitor from seaweeds as an anti-glioma agent. Res J Pharm Tech. 2017; 10(8):2474-8. https://doi.org/10.5958/0974-360X.2017.00437.1 DOI: https://doi.org/10.5958/0974-360X.2017.00437.1
Mandel JL, Pearson ML. Insulin stimulates myogenesis in a rat myoblast line. Nature. 1974; 251(5476):618-20. https://doi.org/10.1038/251618a0. PMid:4421831 DOI: https://doi.org/10.1038/251618a0
Nga NTH, Ngoc TTB, Trinh NTM, Thuoc TL, Thao DTP. Optimization and application of MTT assay in determining the density of suspension cells. Anal Biochem. 2020; 610:113937. https://doi.org/10.1016/j.ab.2020.113937. PMid:32896515 DOI: https://doi.org/10.1016/j.ab.2020.113937
Bahuguna A, Khan I, Bajpai VK, Kang SC. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol. 2017; 12:115-8. https://doi.org/10.3329/bjp.v12i2.30892 DOI: https://doi.org/10.3329/bjp.v12i2.30892
Radhakrishnan M, Ramesh S. In vitro glucose uptake activity of traditional polyherbal formulation in skeletal muscle Cells. Res J Pharm Tech. 2016; 9(5):506-8. https://doi.org/10.5958/0974-360X.2016.00094.9 DOI: https://doi.org/10.5958/0974-360X.2016.00094.9
Liu Y, Encinas M, Comella JX, Aldea M, Gallego C. Basic helix-loop-helix proteins bind to TrkB and p21(Cip1) promoters linking differentiation and cell cycle arrest in neuroblastoma cells. Mol Cell Biol. 2004; 24(7):2662-72. https://doi.org/10.1128/MCB.24.7.2662-2672.2004. PMid:15024057 PMCid: PMC371129 DOI: https://doi.org/10.1128/MCB.24.7.2662-2672.2004
Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, et al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 2009; 30(1):127-35. https://doi.org/10.1016/j.neuro.2008.11.001. PMid:19056420 DOI: https://doi.org/10.1016/j.neuro.2008.11.001
Strittmatter SM, Vartanian T, Fishman MC. GAP-43 is a plasticity protein in neuronal form and repair. J Neurobiol. 1992; 23(5):507-20. https://doi.org/10.1002/neu.480230506. PMid:1431834 DOI: https://doi.org/10.1002/neu.480230506
Kim S, Ghil SH, Kim SS, Myeong HH, Lee YD, Suh-Kim H. Overexpression of neurogenin1 induces neurite outgrowth in F11 neuroblastoma cells. Exp Mol Med. 2002; 34(6):469-75. https://doi.org/10.1038/emm.2002.65 PMid:12526089 DOI: https://doi.org/10.1038/emm.2002.65
Constantinescu R, Constantinescu AT, Reichmann H, Janetzky B. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm Suppl. 2007; 72:17-28. https://doi.org/10.1007/978-3-211-73574-9_3 PMid:17982873 DOI: https://doi.org/10.1007/978-3-211-73574-9_3
Agholme L, Lindström T, Kågedal K, Marcusson J, Hallbeck M. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis. 2010; 20(4):1069-82. https://doi.org/10.3233/JAD-2010-091363. PMid:20413890 DOI: https://doi.org/10.3233/JAD-2010-091363
López-Carballo G, Moreno L, Masiá S, Pérez P, Barettino D. Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem. 2002; 277(28):25297-304. https://doi.org/10.1074/jbc.M201869200 PMid:12000752 DOI: https://doi.org/10.1074/jbc.M201869200
Karthika S, Kannappan N, Suriyaprakash TNK. Effect of medicinal plants on amyloid β1-42 Intoxicated SH-SY5Y cell Lines - As neuroprotective evaluation. Res J Pharm Tech. 2020; 13(7):3351-5. https://doi.org/10.5958/0974-360X.2020.00595.8 DOI: https://doi.org/10.5958/0974-360X.2020.00595.8
Ranjithkumar R, Alhadidi Q, Shah ZA, Ramanathan M. Tribulusterine containing Tribulus terrestris extract exhibited neuroprotection through attenuating stress kinases mediated inflammatory mechanism: In vitro and In vivo studies. Neurochem Res. 2019; 44(5):1228-42. https://doi.org/10.1007/s11064-019-02768-7. PMid:30863969 DOI: https://doi.org/10.1007/s11064-019-02768-7