A Comprehensive Review on the Role of Gymenma sylvestre in Combating Diabetes-2

Jump To References Section

Authors

  • Biotechnology Department, IIMT University, Meerut – 250001, Uttar Pradesh ,IN ORCID logo https://orcid.org/0000-0002-5715-5746
  • Biotechnology Department, IIMT University, Meerut – 250001, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/jnr/2024/44121

Keywords:

Gymnemic Acid, Gymenma sylvestre Ayurvedic, Immunomodulators, Nutraceuticals

Abstract

The current review focuses on a detailed comprehensive role of Gymnema sylvestre (GS) and other herbs for their Ayurvedic impact in controlling blood sugar by releasing insulin from the pancreas in diabetic Type 2. G. sylvestre (GS) supplementation has also been seen to leave an impact on various cardiovascular risk factors and improves the lipid profile, blood pressure, anthropometric indices, and control of glycemia. Additionally, extracts of Gymnema have been shown to have an inhibitory impact on triglyceride accumulation in muscles and the liver, while reducing the buildup of fatty acids in the bloodstream, thus also reducing HB1C parameters. In the current review, we have also discussed information about Gymnemic acid structure isolation their sources, their clinical effects in diabetic control in Type 1 and Type 2, and clinical effects over the humans and mice signalling as immunomodulators.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-11-06

How to Cite

Bhatt, S. M., & Sharma, N. (2024). A Comprehensive Review on the Role of <i>Gymenma sylvestre</i> in Combating Diabetes-2. Journal of Natural Remedies, 24(10), 2143–2155. https://doi.org/10.18311/jnr/2024/44121

Issue

Section

Short Review

Categories

Received 2024-05-21
Accepted 2024-08-12
Published 2024-11-06

 

References

Sentongo P, Zhang Y, Witmer L, Chinchilli VM, Ba DM. Association of COVID-19 with diabetes: A systematic review and meta-analysis. Sci Rep. 2022; 12(1):20191. https://doi.org/10.1038/s41598-022-24185-7

Laha S, Paul S. Gymnema sylvestre (Gurmar): A potent herb with anti-diabetic and antioxidant potential. Pharmacogn J. 2019, 11:201-6. https://doi.org/10.5530/pj.2019.11.33

Rathmann W, Kuss O, Kostev K. Incidence of newly diagnosed diabetes after COVID-19. Diabetologia. 2022; 65(6):949-54. https://doi.org/10.1007/s00125-02205670-0

Beulens JWJ, Pinho MGM, Abreu TC, den Braver NR, Lam TM, Huss A, et al. Environmental risk factors of Type 2 diabetes-an exposome approach. Diabetologia. 2022; 65:263-74. https://doi.org/10.1007/s00125-021-05618-w

Fauziah M, Suhartono S, Widjanarko B, Gasem MH. Phthalates exposure as environmental risk factor for Type 2 diabetes mellitus. Int J Public Heal Sci. 2023; 12(1):172-80. https://doi.org/10.11591/ijphs.v12i1.22280

Alhowikan AM, AL-Ayadhi LY, Halepoto DM. Impact of environmental pollution, dietary factors and diabetes mellitus on Autism Spectrum Disorder (ASD). Pakistan J Med Sci. 2019; 35(4):1179-84. https://doi.org/10.12669/ pjms.35.4.269

Öhlund M, Egenvall A, Fall T, Hansson-Hamlin H, Röcklinsberg H, Holst BS. Environmental risk factors for diabetes mellitus in cats. J Vet Intern Med. 2017; 31(1):2935. https://doi.org/10.1111/jvim.14618

Zheng W, Chu J, Bambrick H, Wang N, Mengersen K, Guo X, et al. Impact of environmental factors on diabetes mortality: A comparison between inland and coastal areas. Sci Total Environ. 2023; 904:166335. https://doi.org/10.1016/j.scitotenv.2023.166335

Zorena K, Michalska M, Kurpas M, Jaskulak M, Murawska A, Rostami S. Environmental factors and the risk of developing Type 1 diabetes-old disease and new data. Biology. 2022; 11:608. https://doi.org/10.3390/biology11040608

Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016; 387(10035):2340-8. https:// doi.org/10.1016/S0140-6736(16)30507-4

Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with Type 2 diabetes and diabetic vascular complications. Rev Diabet Stud. 2012; 9(1):6-22. https://doi.org/10.1900/RDS.2012.9.6

Tremblay J, Hamet P. Environmental and genetic contributions to diabetes. Metabolism. 2019; 100:153952. https://doi.org/10.1016/j.metabol.2019.153952

Bezirtzoglou E, Stavropoulou E, Kantartzi K, Tsigalou C, Voidarou C, Mitropoulou G, et al. Maintaining digestive health in diabetes: The role of the gut microbiome and the challenge of functional foods. Microorganisms. 2021; 9:126. https://doi.org/10.3390/microorganisms9030516

Hinault C, Caroli-Bosc P, Bost F, Chevalier N. Critical overview on endocrine disruptors in diabetes mellitus. Int J Mol Sci. 2023; 24:4537. https://doi.org/10.3390/ijms24054537

Dziewa M, Bańka B, Herbet M, Piątkowska-Chmiel I. Eating disorders and diabetes: Facing the dual challenge. Nutrients. 2023; 15(18):3955. https://doi.org/10.3390/nu15183955

Mahmood L, Flores-Barrantes P, Moreno LA, Manios Y, Gonzalez-Gil EM. The influence of parental dietary behaviors and practices on children’s eating habits. Nutrients. 2021; 13:1138. https://doi.org/10.3390/nu13041138

Almutairi OO, Alhomaid TA, Alshuaibi AM, Alahmad RMA, Al Mardhamah NH, Alamri T. The influence of eating habits on Type 2 diabetes in Saudi Arabia: A systematic review. Cureus. 2023; 15(7):e42638. https://doi.org/10.7759/cureus.42638

Kudo A, Asahi K, Satoh H, Iseki K, Moriyama T, Yamagata K, et al. Fast eating is a strong risk factor for new-onset diabetes among the Japanese general population. Sci Rep. 2019; 9:8210. https://doi.org/10.1038/s41598-019-44477-9

Lejk A, Chrzanowski J, Cieślak A, Fendler W, Myśliwiec M. Effect of nutritional habits on the glycemic response to different carbohydrate diet in children with Type 1 diabetes mellitus. Nutrients. 2021; 13(11). https://doi.org/10.3390/nu13113815

Yuan S, He J, Wu S, Zhang R, Qiao Z, Bian X, et al. Trends in dietary patterns over the last decade and their association with long-term mortality in general US populations with undiagnosed and diagnosed diabetes. Nutr Diabetes. 2023; 13:5. https://doi.org/10.1038/s41387-023-00232-8

Boocock RC. Dietary management of adults with Type 2 diabetes and the role of the nurse. Nurs Stand. 2023; 38(3):57-61. https://doi.org/10.7748/ns.2023.e11960

Tan YQ, Tan ZE, Tan YL, How CH. Dietary advice in diabetes mellitus. Singapore Med J. 2023; 64(5):326-9. https://doi.org/10.4103/singaporemedj.SMJ-2022-004

Gucciardi E, Espin S, Morganti A, Dorado L. Exploring interprofessional collaboration during the integration of diabetes teams into primary care. BMC Fam Pract. 2016; 17(1). https://doi.org/10.1186/s12875-016-0407-1

Sola-Gazagnes A, Riveline JP. La mesure continue du glucose : Présent et avenir Mesure continue du glucose au long cours en 2012. Med des Mal Metab. 2012; 6(6):484-9. https://doi.org/10.1016/S1957-2557(12)70467-4

Afandi A, Candrayani M, Ardiana A, Fariasih C. Interprofessional collaboration in patients diabetes mellitus: A case study. J Kesehat Komunitas Indones. 2023; 3(1):12636. https://doi.org/10.58545/jkki.v3i1.67

Frier A, Devine S, Barnett F, McBain-Rigg K, Dunning T. Incorporating social determinants of health into individual care - A multidisciplinary perspective of health professionals who work with people who have Type 2 diabetes. PLoS One. 2022; 17(8):e0271980. https://doi.org/10.1371/journal.pone.0271980

Harrison LC. Type 1 diabetes. Clinical immunology: Principles and practice. Sixth Edition; 2022. p. 909-18. https://doi.org/10.1016/B978-0-7020-8165-1.00071-X

Agrawal N, Dhakrey P, Pathak S. A comprehensive review on the research progress of PTP1B inhibitors as antidiabetics. Chem Biol Drug Des. 2023; 102:921-38. https://doi.org/10.1111/cbdd.14275

Obanda DN, Cefalu WT. Modulation of cellular insulin signalling and PTP1B effects by lipid metabolites in skeletal muscle cells. J Nutr Biochem. 2013; 24(8):1529-37. https://doi.org/10.1016/j.jnutbio.2012.12.014

Anjana RM, Unnikrishnan R, Deepa M, Pradeepa R, Tandon N, Das AK, et al. Metabolic non-communicable disease health report of India: The ICMR-INDIAB national cross-sectional study (ICMR-INDIAB-17). Lancet Diabetes Endocrinol. 2023; 11(7):474-89. https://doi.org/10.1016/ S2213-8587(23)00119-5

Liu X, Collister JA, Clifton L, Hunter DJ, Littlejohns TJ. Polygenic risk of prediabetes, undiagnosed diabetes, and incident Type 2 diabetes stratified by diabetes risk factors. J Endocr Soc. 2023; 7(4). https://doi.org/10.1210/jendso/ bvad020

Khan F, Sarker MMR, Ming LC, Mohamed IN, Zhao C, Sheikh BY, et al. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front Pharmacol. 2019; 10. https://doi.org/10.3389/fphar.2019.01223

Sai L. Gymnema sylvestre - An overview. World J Pharmaceutical Research. 2017; 6(10):191-195. https://doi.org/10.20959/wjpr201710-9267

Sigoillot M, Brockhoff A, Neiers F, Poirier N, Belloir C, Legrand P, et al. The crystal structure of gurmarin, a sweet taste-suppressing protein: Identification of the amino acid residues essential for inhibition. Chem Senses. 2018; 43(8):635-43. https://doi.org/10.1093/chemse/bjy054

Raji RO, Muhammad HL, Abubakar A, Maikai SS, Raji HF. Acute and sub-acute toxicity profile of crude extract and fractions of Gymnema sylvestre. Clin Phytoscience. 2021; 7:56. https://doi.org/10.1186/s40816-021-00290-4

Murakami N, Murakami T, Kadoya M, Matsuda H, Yamahara J, Yoshikawa M. New hypoglycemic constituents in gymnemic acid from Gymnema sylvestre. Chem Pharm Bull. 1996; 44(2):469-71. https://doi.org/10.1248/cpb.44.469

Kanetkar P, Singhal R, Kamat M. Gymnema sylvestre: A memoir. J Clin Biochem Nutr. 2007; 41:77-81. https://doi.org/10.3164/jcbn.2007010

Joy S, Thomas NG. Gymnemic acid-conjugated gelatin scaffold for enhanced bone regeneration: A novel insight to tissue engineering. Biotechnol Appl Biochem. 2023; 70(5):1652-62. https://doi.org/10.1002/bab.2463

Nazim R, Choudhary AN, Meraj A, Tahir F, Sohail MT. Effect of Gymnema sylvestre extract on liver and kidney functioning: In-vivo study. Life Sci J. 2023; 20(9).

Nani A, Bertuzzi F, Meneghini E, Mion E, Pintaudi B. Combined inositols, α-lactalbumin, Gymnema sylvestre and zinc improve the lipid metabolic profile of patients with Type 2 diabetes mellitus: A randomized clinical trial. J Clin Med. 2023; 12(24):7650. https://doi.org/10.3390/jcm12247650

Pachiappan S, Ramalingam K, Balasubramanian A. Evaluation of Gymnema sylvestre R. Br. against letrozole induced polycystic ovarian syndrome in rats. Res J Pharm Technol. 2023; 16(1):385-90. https://doi.org/10.52711/0974360X.2023.00066

Saneja A, Sharma C, Aneja KR, Pahwa R. Gymnema sylvestre (Gurmar): A review. Der Pharm. 2010; 2(1):275-84.

Aditi, Sharma L, More P, Ghangale G, Tare H. Effect of Gymnema sylvestre in the control of diabetes: A review. Int J Pharm Qual Assur. 2023; 14(1):214-19. https://doi.org/10.25258/ijpqa.14.1.37

Rajalakshmi A, Sumathy G. Gymnema sylvestre-a review. Indian J Forensic Med Toxicol. 2020; 14:1081-4.

Poongunran J, Perera H, Fernando W, Jayasinghe L, Sivakanesan R. α-Glucosidase and α-amylase inhibitory activities of nine Sri Lankan antidiabetic plants. Br J Pharm Res. 2015; 7(5):365-74. https://doi.org/10.9734/BJPR/2015/18645

Mahajan SM, Baviskar DT, Chaudhari P. Anti-diabetic activity of polyherbal formulation on alloxan induced diabetes. IOSR J Pharm Biol Sci. 2018; 13(1):1-6.

Islam A, Rebello L, Chepyala S. A review of anti-diabetic activity of Gymnema sylvestre and Pterocarpus marsupium: Special emphasis on its combination in 4DM. Int J Nat Sci. 2019; 3.

Keerthika R, Raghu S. Efficacy of Gymnema sylvestre as a potent antioxidant: An in vitro study. Ann Med Health Sci Res. 2021; 11:225-36.

Anjum, T., Hasan Z. Gymnema sylvestre plant used by peoples of Vidisha District for the treatment of diabetes. Int J Eng Sci Invent. 2013; 2(6):98-102.

Saiki P, Kawano Y, Ogi T, Klungsupya P, Muangman T, Phantanaprates W, et al. Purified gymnemic acids from Gymnema inodorum tea inhibit 3t3-l1 cell differentiation into adipocytes. Nutrients. 2020; 12(9):1-14. https://doi.org/10.3390/nu12092851

Packialakshmi B, Sowndriya SR. Anti-cancer effect of Gymnema sylvestre leaf extract against MG63, human osteosarcoma cell line - An in vitro analysis. Int J Curr Res Rev. 2019; 11(11):18-24. https://doi.org/10.31782/IJCRR.2019.11114

Singh VK, Dwivedi P, Chaudhary BR, Singh R. Immunomodulatory effect of Gymnema sylvestre (R. Br.) leaf extract: An in vitro study in rat model. PLoS One. 2015; 10(10). https://doi.org/10.1371/journal.pone.0139631

Lavanya D, Haldar A, Priya SC. Phytochemical screening, isolation and evaluation of analgesic activity on the leaves of Gymnema sylvestre. Indo Am J Pharm Res. 2014; 4(03):4-3.

Khan J, Sheoran S, Khan W, Panda BP. Metabolic differentiation and quantification of gymnemic acid in Gymnema sylvestre (Retz.) R. Br. ex Sm. leaf extract and its fermented products. Phytochem Anal. 2020; 31(4):488-500. https://doi.org/10.1002/pca.2912

Rajalakshmi A, Sumathy G. Histological studies on pancreatic tissue in high fat diet with low multiple dosage of streptozotocin induced Type 2 diabetes after Gymnema sylvestre administration. Indian J Public Heal Res Dev. 2019; 10(12):917-22. https://doi.org/10.37506/v10/i12/2019/ijphrd/192237

Singh VK, Dwivedi P, Chaudhary BR, Singh R. Gymnemic acid stimulates in vitro splenic lymphocyte proliferation. Phyther Res. 2016; 30(2):341-4. https://doi.org/10.1002/ptr.5514

Venkatesan H, Karthi SA. Hypoglycaemic effect of alcoholic extracts of the leaves of Abroma Augusta and Gymnema sylvestre plants in Type II diabetes mellitus patients. Indian J Public Heal Res Dev. 2020; 11(7):288-94.

Ranjan A, Singh RK, Khare S, Tripathi R, Pandey RK, Singh AK, et al. Characterization and evaluation of mycosterol secreted from endophytic strain of Gymnema sylvestre for inhibition of α-glucosidase activity. Sci Rep. 2019; 9(1):17302. https://doi.org/10.1038/s41598-019-53227-w

El-Aziz A, Hamdy A, M Attia AE-R, El Mallah MM. Study the effect of Gurmmar aqueous extract on oxidative stress of diabetic rats. Egypt J Nutr. 2018; 33(1):1-35. https://doi.org/10.21608/enj.2018.142708

Sahu NP, Mahato SB, Sarkar SK, Poddar G. Triterpenoid saponins from Gymnema sylvestre. Phytochem. 1996; 41(4):1181-5. https://doi.org/10.1016/0031-9422(95)007822

Sehajpal S, Saraswat R, Verma N. Pharmacognostical profile of Gymnema sylvestre and its anti-hyperglycemic activity. J Pharm Res Int. 2021; 33(58A):365-76. https://doi.org/10.9734/jpri/2021/v33i58A34128

Zhu X-M, Xie P, Di Y-T, Peng S-L, Ding L-S, Wang M-K. Two new triterpenoid saponins from Gymnema sylvestre. J Integr Plant Biol. 2008; 50(5):589-92. https://doi.org/10.1111/j.1744-7909.2008.00661.x

Myemba DT, Bwire GM, Sangeda RZ. Microbiological quality of selected local and imported non-sterile pharmaceutical products in Dar es Salaam, Tanzania. Infect Drug Resist. 2022; 15:2021-34. https://doi.org/10.2147/IDR.S355331

Karthikeyan, G., V. Ravindran, and J. Ramamurthy. “Prevalence of usage of stainless steel crown, strip crown and zirconia in anterior teeth for paediatric dental patients in different age groups.” Int. J. Res. Pharm. Sci 11 (2020): 1511-1516.

Daisy P, Eliza J, Farook KAMM. A novel dihydroxy gymnemic triacetate isolated from Gymnema sylvestre possessing normoglycemic and hypolipidemic activity on STZ-induced diabetic rats. J Ethnopharmacol. 2009; 126(2):339-44. https://doi.org/10.1016/j.jep.2009.08.018

Shigematsu N, Asano R, Shimosaka M, Okazaki M. Effect of administration with the extract of Gymnema sylvestre R. Br leaves on lipid metabolism in rats. Biol Pharm Bull. 2001; 24(6):713-7. https://doi.org/10.1248/bpb.24.713

Shenoy RS, Prashanth KV, Manonmani HK. In vitro antidiabetic effects of isolated triterpene glycoside fraction from Gymnema sylvestre. Evidence-based Complement Altern Med. 2018. https://doi.org/10.1155/2018/7154702

Komolkriengkrai M, Jangchart R, Sandech N, Vongvatcharanon U, Khimmaktong W. Beneficial effects of gymnemic acid on three-dimensional vascular architecture and expression of vascular endothelial growth factor of intrarenal segmental and interlobar arteries in diabetic rat kidney. Funct Foods Heal Dis. 2022; 12(6):340-51. https://doi.org/10.31989/ffhd.v12i6.930

Shenoy RS, Nagendra HG, Manonmani HK, others. In silico evaluation of naturally isolated Triterpene Glycosides (TG) from Gymnema sylvestre towards diabetic treatment. Heliyon. 2021; 7(12):e08407. https://doi.org/10.1016/j.heliyon.2021.e08407

Liu B, Asare-Anane H, Al-Romaiyan A, Huang G, Amiel SA, Jones PM, et al. Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse β-cells and human islets of Langerhans. Cell Physiol Biochem. 2009; 23(1-3):125-32. https://doi.org/10.1159/000204101

Venkatesan H, Karthi SA. Hypoglycaemic effect of alcoholic extracts of the leaves of Abroma Augusta and Gymnema sylvestre plants in Type II diabetes mellitus patients. Indian J Public Heal Res Dev. 2020; 11(7).