Impact of the Anti-Tuberculosis Drug Rifampicin on the Feeding, Growth and Embryonic Developmental Profile of the Mosquitofish Gambusia affinis

Jump To References Section

Authors

  • Department of Studies in Zoology, Karnatak University, Dharwad – 580 003, Karnataka ,IN
  • Department of Studies in Zoology, Karnatak University, Dharwad – 580 003, Karnataka ,IN
  • Department of Studies in Zoology, Karnatak University, Dharwad – 580 003, Karnataka ,IN
  • Department of Studies in Zoology, Karnatak University, Dharwad – 580 003, Karnataka ,IN

DOI:

https://doi.org/10.18311/jeoh/2023/33337

Keywords:

Anomalies, Embryos, Growth, Mosquitofish, Rifampicin, Viviparity

Abstract

Although the accumulation of pharmaceutical drugs in aquatic bodies has increased rapidly in recent years, the effect of rifampicin (RIF), a first-line anti-tuberculosis drug, on fish feeding, growth, and embryonic development is unknown. This investigation aimed to determine the impact of RIF on growth and embryonic developmental profile in the mosquitofish Gambusia affinis. Experimental groups included controls, which were kept in normal water for 21 days, whereas those in the second, third, and fourth groups were exposed to 50, 200, and 500 mg RIF/L water, respectively. The food intake rate and Specific Growth Rate (SGR) showed a concentration-dependent significant decrease in RIF-treated fish compared with controls, and a strong positive correlation was found between food consumption and SGR. A significant decrease in the number of embryos at an early stage of development and the total number of embryos in RIF-treated fish was associated with several congenital anomalies such as lack of vitellogenin accumulation, yolk sac regression, decreased pigmentation, aggregations of blood vessels, and curvature of the spinal cord compared with controls. Together, these results reveal for the first time that RIF treatment not only impacts feeding and growth, but also exerts potential teratogenic effect on embryonic developmental stages in the mosquitofish G. affinis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

S. K. Bhat, Department of Studies in Zoology, Karnatak University, Dharwad – 580 003, Karnataka

 

 

Bevoor Bhagyashree, Department of Studies in Zoology, Karnatak University, Dharwad – 580 003, Karnataka

 

 

V. Chandralekha, Department of Studies in Zoology, Karnatak University, Dharwad – 580 003, Karnataka

 

 

Downloads

Published

2023-06-16

How to Cite

Bhat, S. K., Bhagyashree, B., Chandralekha, V., & Ganesh, C. B. (2023). Impact of the Anti-Tuberculosis Drug Rifampicin on the Feeding, Growth and Embryonic Developmental Profile of the Mosquitofish <i>Gambusia affinis</i>. Journal of Ecophysiology and Occupational Health, 23(2), 57–66. https://doi.org/10.18311/jeoh/2023/33337

Issue

Section

Research Article
Received 2023-03-21
Accepted 2023-06-16
Published 2023-06-16

 

References

Beirne P, South N. Introduction: Approaching green criminology. In: Issues in green criminology confronting harms against environments, humanity and other animals. Cullompton, UK: Willan Publishing; 2007. p. 13–22.

White R. Environmental crime: A reader. Devon, UK: Willan; 2009.

Daughton CG, Ternes TA. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ Health Perspect. 1999; 107:907–38. https://doi.org/10.1289/ ehp.99107s6907 DOI: https://doi.org/10.1289/ehp.99107s6907

Chandra R, Saxena G, Kumar V. Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Advances in biodegradation and bioremediation of industrial waste. CRC Press, Taylor and Francis Group, Boca Raton, FL; 2015. p. 1–30. https://doi. org/10.1201/b18218-2 DOI: https://doi.org/10.1201/b18218-2

Gaso-Sokac D, Habuda-Stanic M, Busic V, Zobundzija D. Occurrence of pharmaceuticals in surface water. Croat J Food Sci Technol. 2017; 9(2):204–10. https://doi.org/10.17508/ CJFST.2017.9.2.18 DOI: https://doi.org/10.17508/CJFST.2017.9.2.18

Nikolaou A, Meric S, Fatta D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem. 2007; 387(4):1225–34. https://doi.org/10.1007/ s00216-006-1035-8 DOI: https://doi.org/10.1007/s00216-006-1035-8

Netzloff ML. The effects of drugs on embryonic development. Ann Clin Lab Sci. 1976; 6(4):332– 41. https://doi.org/10.1007/ BF02899980

Sachdeva P. The effects of drugs on embryonic development. Ann Clin Lab Sci. 1976; 71:1–7.

Masters SB, Trevor AJ, Katzung BG. Katzung. Trevor’s Pharmacology. 200; New York: Lange Medical Books/McGraw Hill, Medical Pub. Division.

Sensi P, Margalith P, Timba, MT. Rifomycin, a new antibiotic preliminary report. Farmaco Ed Sci. 1959; 14:146–7.

Tejada FR, Walk AR, Kharel MK. Drugs used in tuberculosis and leprosy. Side Eff Drugs Annu. 2015; 37:349–65. https://doi. org/10.1016/bs.seda.2015.06.009 DOI: https://doi.org/10.1016/bs.seda.2015.06.009

Ruiz P, Gutierrez J, Rodríguez-Cano F, Zerolo FJ, Casal M. Activity of rifampin against Mycobacterium tuberculosis in a reference centre. Microb Drug Resist. 2004; 10(3): 239–42. https://doi.org/10.1089/mdr.2004.10.239 13. Varner TR, Bookstaver PB, Rudisill CN, Albrecht H. Role of rifampin-based combination therapy for severe communityacquired Legionella pneumophila pneumonia. Ann Pharmacother. 2011; 45(7–8):967–76. https://doi.org/10.1345/aph.1Q074 DOI: https://doi.org/10.1089/1076629041939364

van Ewijk-Beneken Kolmer EWJ, Teulen MJA, Van den Hombergh ECA, van Erp NE, Te Brake LHM. Determination of protein-unbound, active rifampicin in serum by ultrafiltration and ultra-performance liquid chromatography with UV detection. A method suitable for standard and high doses of rifampicin. J Chromatogr B Analyt Technol Biomed Life Sci. 2017; 1063:42–9. https://doi.org/10.1016/j.jchromb.2017.08.004 DOI: https://doi.org/10.1016/j.jchromb.2017.08.004

Pereira MN, Matos BN, Gratieri T, Cunha-Filho M, Gelfuso GM. Development and validation of a simple chromatographic method for simultaneous determination of clindamycin phosphate and rifampicin in skin permeation studies. J Pharm Biomed Anal. 2018; 159:331–40. https://doi.org/10.1016/j.jpba.2018.07.007 DOI: https://doi.org/10.1016/j.jpba.2018.07.007

Sun J, Zhu D, Xu J, Jia R, Chen S, Liu M, et al. Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiol. 2019; 19(1):107. https://doi.org/10.1186/s12866-019-1478-7 DOI: https://doi.org/10.1186/s12866-019-1478-7

Khan AU, Shah F, Khan RA, Ismail B, Khan AM, Muhammad H. Preconcentration of rifampicin prior to its efficient spectroscopic determination in the wastewater samples based on a nonionic surfactant. Turk J Chem. 2021; 45(4):1201–9. https://doi. org/10.3906/kim-2102-28 DOI: https://doi.org/10.3906/kim-2102-28

Shayakhmetova GM, Bondarenko LB, Kovalenko VM. Damage of testicular cell macromolecules and reproductive capacity of male rats following co-administration of ethambutol, rifampicin, isoniazid and pyrazinamide. Interdiscip Toxicol. 2012; 5(1):9–14. https://doi.org/10.2478/v10102-012-0002-9 DOI: https://doi.org/10.2478/v10102-012-0002-9

Awodele O, Momoh AA, Awolola NA, Kale OE, Okunowo WO. The combined fixed-dose antituberculous drugs alter some reproductive functions with oxidative stress involvement in wistar rats. Toxicol Rep. 2016; 3:620–7. https://doi.org/10.1016/j.toxrep.2016.06.007 DOI: https://doi.org/10.1016/j.toxrep.2016.06.007

Al-Asady FM, Al-Saray DA. Impacts administration of rifampicin on sperm DNA integrity and male reproductive system parameters in rats. Res J Pharm Technol. 2021; 14 (9):4897–902. https://doi.org/10.52711/0974-360X.2021.00851 DOI: https://doi.org/10.52711/0974-360X.2021.00851

Nocke-Finck L, Breuer H. Effect of rifampicin on the biosynthesis of testosterone in rat testis. Acta Endocrinol. 1981; 97(4):573–6. https://doi.org/10.1530/acta.0.0970573 DOI: https://doi.org/10.1530/acta.0.0970573

Ezeuk VC, Ataman JE, Grillo DB. Toxic effects of antituberculosis drugs (Isoniazid and Rifampicin) on feto-placental unit of wistar rats: A morphological, histological and biochemical study. J Clin Exp Tox. 2019; 3(1):1–6.

Al-Chalaby AS. Effect of antituberculosis, (Rifampicin and Isoniazide) on female reproductive system performance in adult rats. Kufa J Vet Sci. 2012; 3(2):1–7. DOI: https://doi.org/10.36326/kjvs/2012/v3i23944

Stratford BF. Observations on laboratory rodents treated with “rifamide” during pregnancy. Med J Aust. 1966:10–12. https:// doi.org/10.5694/j.1326-5377.1966.tb19426.x 25. Steen JS, Stainton-Ellis DM. Rifampicin in pregnancy. Lancet (London, England), 1977. p. 604-605. https://doi.org/10.1016/ S0140-6736(77)91447-7

Kalayci T, Erener-Ercan T, Buyukkale G, Cetinkaya M. Limb deformity in a newborn. Is rifampicin just an innocent bystander? Eur Rev Med Pharmacol Sci. 2015; 19(3):517–19.

Moro RN, Scott NA, Vernon A, Tepper NK, Goldberg SV, Schwartzman K, et al. Exposure to latent tuberculosis treatment during pregnancy. The PREVENT TB and the iAdhere Trials. Trials Ann Am Thorac Soc. 2018; 15(5):570–80. https://doi.org/10.1513/AnnalsATS.201704-326OC DOI: https://doi.org/10.1513/AnnalsATS.201704-326OC

Chaisriram N, Plakornkul V, Roongruangchai J. The teratogenic effect of rifampicin on the developing chick embryo. Rangsit Graduate Research Conference, RGRC. 2018; 13:2981–7.

Wourms JP, Grove BD, Lombardi J. The maternal-embryonic relationship in viviparous fishes. Fish Physiol. 1988; 11:1-134. https://doi.org/10.1016/S1546-5098(08)60213-7 DOI: https://doi.org/10.1016/S1546-5098(08)60213-7

Farr JA. Sexual selection and secondary sexual differentiation in poeciliids: Determinants of male mating success and the evolution of female choice. In: Ecology and Evolution of Live bearing Fishes (Poeciliidae), Meffe GK, Snelson FF Jr., editors. Prentice Hall: USA; 1989. p. 91–123.

Bhat SK, Ganesh CB. Dopamine receptor agonist bromocriptine restrains the follicular development, hatchling success and puberty in Gambusia affinis. J Appl Ichthyol. 2019; 35(2):501–11. https://doi.org/10.1111/jai.13875 DOI: https://doi.org/10.1111/jai.13875

De las Heras V, Martos-Sitcha J, Yúfera M, Mancera JM, Martínez-Rodríguez, G. Influence of stocking density on growth, metabolism and stress of thick-lipped grey mullet Chelon labrosus Juveniles. Aquaculture. 2015; 448:29–37. https://doi.org/10.1016/j.aquaculture.2015.05.033 DOI: https://doi.org/10.1016/j.aquaculture.2015.05.033

Hopkins KD. Reporting fish growth: A review of the basics. J World Aquac Soc. 1992; 23:173–9. https://doi. org/10.1111/j.1749-7345.1992.tb00766.x DOI: https://doi.org/10.1111/j.1749-7345.1992.tb00766.x

Yamamoto Y, Luckenbach JA, Middleton MA, Swanson P. The spatiotemporal expression of multiple coho salmon ovarian connexin genes and their hormonal regulation in vitro during oogenesis. Reprod Biol Endocrinol. 2011; 9(1):1–16. https://doi.org/10.1186/1477-7827-9-52 DOI: https://doi.org/10.1186/1477-7827-9-52

Adaklı A, Taşbozan O. The effects of different cycles of starvation and refeeding on growth and body composition on European sea bass (Dicentrarchus labrax). Turk J Fish Aquat. 2015; 15(3):419– 27. http://dx.doi.org/10.13140/RG.2.1.4626.4168

Pérez-Jiménez A, Cardenete G, Hidalgo MC, García-Alcázar A, Abellán E, Morales AE. Metabolic adjustments of dentex to prolonged starvation and refeeding. Fish Physiol Biochem. 2015; 38(4):114–57. https://doi.org/10.1007/s10695-011-9600-2 DOI: https://doi.org/10.1007/s10695-011-9600-2

Elbialy ZI, Gamal S, Al-Hawary II, Shukry M, Salah AS, Aboshosha AA, Assar DH. Exploring the impacts of different fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): Growth performance, histopathological study, and expression levels of some muscle growthrelated genes. Fish Physiol Biochem. 2022; 48:973–89. https://doi.org/10.1007/s10695-022-01094-0 DOI: https://doi.org/10.1007/s10695-022-01094-0

Kwon HC, Hayashi S, Mugiya Y. Vitellogenin induction by estradiol-17β in primary hepatocyte culture in the rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol B: Comp Biochem. 1993; 104(2):381–6. https://doi.org/10.1016/0305- 0491(93)90383-G DOI: https://doi.org/10.1016/0305-0491(93)90383-G

Tyler CR, Sumpter JP, Witthames PR. The dynamics of oocyte growth during vitellogenesis in the rainbow trout (Oncorhynchus mykiss). Biol Reprod. 1990; 43(2):202–9. https://doi.org/10.1095/biolreprod43.2.202 DOI: https://doi.org/10.1095/biolreprod43.2.202

Morrison KR, Ngo V, Cardullo RA, Reznick DN. How fish eggs are preadapted for the evolution of matrotrophy. Proceedings of Royal Society B. 2017; 284: 20171342. https://doi.org/10.1098/ rspb.2017.1342 DOI: https://doi.org/10.1098/rspb.2017.1342

Navarro I, Gutiérrez J. Fasting and starvation. In: Biochemistry and molecular biology of fishes, ed. P. W. Hochanchka and T. P. Mommsen, Amsterdam: Elsevier Science; 1995. p. 393–434. https://doi.org/10.1016/S1873-0140(06)80020-2 DOI: https://doi.org/10.1016/S1873-0140(06)80020-2

Ali M, Nicieza A, Wooton RJ. Compensatory growth in fishes: A response to growth depression, Fish. Fish (Oxf). 2003; 4:147–90. https://doi.org/10.1046/j.1467-2979.2003.00120.x DOI: https://doi.org/10.1046/j.1467-2979.2003.00120.x

Reading B, Andersen L, Ryu YW, Mushirobira Y, Todo T, Hiramatsu N. Oogenesis and egg quality in finfish: Yolk formation and other factors influencing female fertility. Fishes. 2018; 3(4):45. https://doi.org/10.3390/fishes3040045 DOI: https://doi.org/10.3390/fishes3040045

Amaral IP, Johnston IA. Insulin-like Growth Factor (IGF) signalling and genome-wide transcriptional regulation in fast muscle of zebrafish following a single-satiating meal. J Exp Biol. 2011; 214(13):2125–39. https://doi.org/10.1242/jeb.053298 DOI: https://doi.org/10.1242/jeb.053298

Ndandala CB, Dai M, Mustapha UF, Li X, Liu J, Huang H, Li G, Chen H. Current research and future perspectives of GH and IGFs family genes in somatic growth and reproduction of teleost fish. Aquacult Rep. 2022; 26:1–11. https://doi.org/10.1016/j.aqrep.2022.101289 DOI: https://doi.org/10.1016/j.aqrep.2022.101289

Mosconi G, Carnevali O, Habibi HR, Sanyal R, Polzonetti- Magni AM. Hormonal mechanisms regulating hepatic vitellogenin synthesis in the Gilthead Sea bream, Sparus aurata. Am J Physiol Cell Physiol. 2002; 28(3):C673–8. https://doi.org/10.1152/ajpcell.00411.2001 DOI: https://doi.org/10.1152/ajpcell.00411.2001

Moussavi M, Nelson ER, Habibi HR. Seasonal regulation of vitellogenin by growth hormone in the goldfish liver. Gen Comp Endocrinol. 2009; 161(1): 79–82. https://doi.org/10.1016/j.ygcen.2008.12.009 DOI: https://doi.org/10.1016/j.ygcen.2008.12.009

Perera E, Rosell-Moll E, Martos-Sitcha JA, Naya-Catala F, Simó-Mirabet P, Calduch-Giner J, et al. Physiological trade-offs associated with fasting weight loss, resistance to exercise and behavioral traits in farmed gilthead sea bream (Sparus aurata) selected by growth. Aquac Rep. 2021; 20. https:// doi.org/10.1016/j.aqrep.2021.100645 DOI: https://doi.org/10.1016/j.aqrep.2021.100645

Emel’yanova NG, Pavlov DA, Pavlov ED, Thuan LTB, Ha V T. Anomalies in ovarian condition of manybar goatfish Parupeneus multifasciatus (Mullidae) from the coastal zone of south-Central Vietnam. J Ichthyol. 2014; 54:76–84. https://doi.org/10.1134/ S0032945214010056 DOI: https://doi.org/10.1134/S0032945214010056

Myrianthopoulos NC, Chung CS. Congenital malformations in singletons: Epidemiologic survey. Report from the Collaborative Perinatal project, Birth Defects Orig Artic Ser. 1974; 10(11):1–58.

Weinberger SE, Weiss ST, Cohen WR, Weiss JW, Johnson TS. Pregnancy and the lung. Am Rev Respir Dis. 1980; 121(3):559– 81. https://doi.org/10.1164/arrd.1980.121.3.559 DOI: https://doi.org/10.1164/arrd.1980.121.3.559

Snider DE, Layde PM, Johnson MW, Lyle MA. Treatment of tuberculosis during pregnancy. Am Rev Respir Dis. 1980; 122(1):65–79.