Distillery Effluent Melanoidin Decolorization Induced by a Yeast Strain Candida tropicalis (Y-2)

Jump To References Section

Authors

  • Department of Microbiology, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Microbiology, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Microbiology, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN
  • Department of Microbiology, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya - 224001, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/jeoh/2023/34581

Keywords:

Decolorization, Melanoidin, Medium, Novel Yeast, Optimization

Abstract

Molasses is used in the manufacturing of ethanol at sugarcane distilleries, which also produces a significant volume of effluent with melanoidin pigment and high BOD, COD, and pH. Melanoidin is a dark brown pigment that may be treated before disposal since it has a number of harmful consequences. This study’s objective was to identify possible melanoidin pigment-decolorizing yeast from natural resources and optimize it for various physiological, chemical, and dietary factors. From the various samples taken from the neighbouring distillery site, a total of 15 yeasts were isolated. Candida tropicalis (Y-2) was the name of the yeast strain that had the most colour decolorization. Within 32 hours of incubation, this strain of yeast displayed maximal decolorization (83%) at 35°C with 0.5% glucose, 0.5% peptone, 0.05% MgSO4, and 0.01% KH2PO4 pH-5. This yeast displayed maximal decolorization in the shortest amount of time while using the least quantity of carbon and nitrogen sources. This yeast strain may be used on an industrial scale to decolorize melanoidin since it is exceedingly successful. This is the first investigation of this unique strain of yeast that decolorizes spent wash.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-09-19

How to Cite

Patel, A., Singh, R., Verma, T., Shukla, V., & Gaur, R. (2023). Distillery Effluent Melanoidin Decolorization Induced by a Yeast Strain <i>Candida tropicalis</i> (Y-2). Journal of Ecophysiology and Occupational Health, 23(3), 141–152. https://doi.org/10.18311/jeoh/2023/34581

Issue

Section

Research Article
Received 2023-07-28
Accepted 2023-08-23
Published 2023-09-19

 

References

Naik N, Jagadeesh KS, Noolvi MN. Enhanced degradation of melanoidin and caramel in biomethanated distillery spent wash by microorganisms isolated from mangroves. Iranian (Iranica) Journal of Energy and Environment. 2010; 1(4).

Wedzicha BL, Kaputo MT. Melanoidins from glucose and glycine: Composition, characteristics and reactivity towards sulphite ion. Food Chemistry. 1992; 43(5):359-67. https://doi. org/10.1016/0308-8146(92)90308-O DOI: https://doi.org/10.1016/0308-8146(92)90308-O

Dahiya J, Singh D, Nigam P. Decolourisation of synthetic and spentwash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresource Technology. 2001; 78(1):95- 8. https://doi.org/10.1016/S0960-8524(00)00119-X DOI: https://doi.org/10.1016/S0960-8524(00)00119-X

Chandra R, Bhargava RN, Rai V. Melanoidins as major colourant in sugarcane molasses-based distillery effluent and its degradation. Bioresource Technology. 2008; 99(11):4648-60. https://doi.org/10.1016/j.biortech.2007.09.057 DOI: https://doi.org/10.1016/j.biortech.2007.09.057

Peña M, Coca M, González G, Rioja R, Garcıa MT. Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere. 2003; 51(9):893-900. https://doi.org/10.1016/ S0045-6535(03)00159-0 DOI: https://doi.org/10.1016/S0045-6535(03)00159-0

Mohana S, Desai C, Madamwar D. Biodegradation and decolourization of anaerobically treated distillery spent wash by a novel bacterial consortium. Bioresource Technology. 2007; 98(2):333-9. https://doi.org/10.1016/j.biortech.2005.12.024 DOI: https://doi.org/10.1016/j.biortech.2005.12.024

Moosvi S, Keharia H, Madamwar D. Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World Journal of Microbiology and Biotechnology. 2005; 21:667-72. https://doi.org/10.1007/s11274-004-3612-3 DOI: https://doi.org/10.1007/s11274-004-3612-3

Ohmomo S, Kaneko Y, Sirianuntapiboon S, Somchai P, Atthasampunna P, Nakamura I. Decolorization of molasses wastewater by a thermophilic strain, Aspergillus fumigatus G-2- 6. Agricultural and Biological Chemistry. 1987; 51(12):3339-46. https://doi.org/10.1080/00021369.1987.10868588 DOI: https://doi.org/10.1080/00021369.1987.10868588

Nwuche CO, Ugoji EO. Effects of heavy metal pollution on the soil microbial activity. International Journal of Environmental Science and Technology. 2008; 5:409-14. https://doi.org/10.1007/ BF03326036. DOI: https://doi.org/10.1007/BF03326036

Kumar S, Viswanathan L. Production of biomass, carbon dioxide, volatile acids, and their interrelationship with decrease in chemical oxygen demand, during distillery waste treatment by bacterial strains. Enzyme and Microbial Technology. 1991; 13(2):179-87. https://doi.org/10.1016/0141-0229(91)90176-B DOI: https://doi.org/10.1016/0141-0229(91)90176-B

Jiranuntipon S, Chareonpornwattana S, Damronglerd S, Albasi C, Delia ML. Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium. Journal of Industrial Microbiology and Biotechnology. 2008; 35(11):1313-21. https:// doi.org/10.1007/s10295-008-0413-y DOI: https://doi.org/10.1007/s10295-008-0413-y

Tiwari S, Gaur R, Singh R. Decolorization of a recalcitrant organic compound (Melanoidin) by a novel thermotolerant yeast, Candida tropicalis RG-9. BMC Biotechnology. 2012; 12:1- 8. https://doi.org/10.1186/1472-6750-12-30 DOI: https://doi.org/10.1186/1472-6750-12-30

Ravikumar R, Vasanthi NS, Saravanan K. Single factorial experimental design for decolorizing anaerobically treated distillery spent wash using Cladosporium cladosporioides. International Journal of Environmental Science and Technology. 2011; 8:97-106. https://doi.org/10.1007/BF03326199 DOI: https://doi.org/10.1007/BF03326199

Tondee T, Sirianutapiboon S. Screening of melanoidin decolorization activity in yeast strain. In Int Conf Environ. 2006; 99:5511-9. https://doi.org/10.1016/j.biortech.2007.10.050 DOI: https://doi.org/10.1016/j.biortech.2007.10.050

Pazouki L, Niinemets Ü. Multi-substrate terpene synthases: Their occurrence and physiological significance. Frontiers in Plant Science. 2016; 7:1019. https://doi.org/10.3389/fpls.2016.01019 DOI: https://doi.org/10.3389/fpls.2016.01019

Ohmomo S, Kainuma M, Kamimura K, Sirianuntapiboon S, Aoshima I, Atthasampunna P. Adsorption of melanoidin to the mycelia of Aspergillus oryzae Y-2-32. Agricultural and Biological Chemistry. 1988; 52(2):381-6. https://doi.org/10.1080/00021369. 1988.10868685

Çetin D, Dönmez G. Decolorization of reactive dyes by mixed cultures isolated from textile effluent under anaerobic conditions. Enzyme and Microbial Technology. 2006; 38(7):926-30. https:// doi.org/10.1016/j.enzmictec.2005.08.020 DOI: https://doi.org/10.1016/j.enzmictec.2005.08.020

Sirianuntapiboon S, Phothilangka P, Ohmomo S. Decolorization of molasses wastewater by a strain No. BP103 of acetogenic bacteria. Bioresource Technology. 2004. 92(1):31-9. https://doi. org/10.1016/j.biortech.2003.07.010 DOI: https://doi.org/10.1016/j.biortech.2003.07.010

Adikane HV, Dange MN, Selvakumari K. Optimization of anaerobically digested distillery molasses spent wash decolorization using soil as inoculum in the absence of additional carbon and nitrogen source. Bioresource Technology. 2006; 97(16):2131-5. https://doi.org/10.1016/j.biortech.2005.10.011 DOI: https://doi.org/10.1016/j.biortech.2005.10.011

Sirianuntapiboon S, Zohsalam P, Ohmomo S. Decolorization of molasses wastewater by Citeromyces sp. WR-43-6. Process Biochemistry. 2004; 39(8):917-24. https://doi.org/10.1016/ S0032-9592(03)00199-7 DOI: https://doi.org/10.1016/S0032-9592(03)00199-7

Kumar P, Chandra R. Decolourisation and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus spp. Bioresource Technology. 2006; 97(16):2096-102. https://doi.org/10.1016/j.biortech.2005.10.012 DOI: https://doi.org/10.1016/j.biortech.2005.10.012

Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Archives of Microbiology. 1978; 117:277-85. https://doi.org/10.1007/BF00738547 DOI: https://doi.org/10.1007/BF00738547

Miranda MP, Benito GG, San Cristobal N, Nieto CH. Color elimination from molasses wastewater by Aspergillus niger. Bioresource Technology. 1996; 57(3):229-35. https://doi. org/10.1016/S0960-8524(96)00048-X DOI: https://doi.org/10.1016/S0960-8524(96)00048-X

Shayegan J, Pazouki M, Afshari A. Continuous decolorization of anaerobically digested distillery wastewater. Process Biochemistry. 2005; 40(3-4):1323-9. https://doi.org/10.1016/j. procbio.2004.06.009 DOI: https://doi.org/10.1016/j.procbio.2004.06.009

Angayarkanni J, Palaniswamy M, Sawminathan K. Biotreatment of distillery effluent using Aspergillus niveus. Bulletin of Environmental Contamination and Toxicology. 2003; 70:268. https://doi.org/10.1007/s00128-002-0187-2 DOI: https://doi.org/10.1007/s00128-002-0187-2

Krzywonos M. Decolorization of sugar beet distillery effluent using mixed cultures of bacteria of the genus Bacillus. African Journal of Biotechnology. 2012; 11(14):3464-75. https://doi. org/10.5897/AJB11.3029 DOI: https://doi.org/10.5897/AJB11.3029

Yadav S, Chandra R. Biodegradation of organic compounds of Molasses Melanoidin (MM) from Biomethanated Distillery Spent Wash (BMDS) during the decolourisation by a potential bacterial consortium. Biodegradation. 2012; 23(4):609-20. https://doi.org/10.1007/s10532-012-9537-x DOI: https://doi.org/10.1007/s10532-012-9537-x

Most read articles by the same author(s)