Fenpropathrin Induces Oxidative Stress, Inhibits Cholinesterase, and Causes Genotoxicity in Pethia conchonius (Hamilton, 1822)

Jump To References Section

Authors

  • Department of Zoology, Karnatak University, Dharwad - 580003, Karnataka ,IN
  • Department of Zoology, Karnatak University, Dharwad - 580003, Karnataka ,IN

DOI:

https://doi.org/10.18311/jeoh/2023/34615

Keywords:

Fenpropathrin, Genotoxicity, Oxidative Stress, Pethia conchonius, Pyrethroid Toxicity

Abstract

Pesticide contamination in water bodies is a serious threat to aquatic organisms. Among the new generation pesticides, synthetic pyrethroids enter the aquatic environment from agricultural runoff and are more persistent in aquatic environment. In this study, we investigated the effect of fenpropathrin, a type II pyrethroid, on Pethia conchonius. The median lethal concentration for commercial formulation of fenpropathrin (Danitol®) was determined to be 2.43 μg/L. Based on the median lethal concentration, the fish were exposed to 1/5th (0.486 μg/L) and 1/10th (0.243 μg/L) of median lethal concentrations for 30 days. After the exposure period, antioxidant enzymes status (superoxide dismutase and catalase), oxidative stress parameters (lipid peroxidation and reduced glutathione) in brain, liver, and kidney, cholinesterase enzyme activity in brain and muscles, and incidences of micronucleus were evaluated. In the treatment groups, alteration in antioxidant enzyme levels were observed in brain, liver, and kidney. Lipid peroxidation, which is indicative of oxidative stress, was observed but did not show much variation. Reduced glutathione was also altered. Cholinesterase activity was significantly different in the brain tissues between control and treatment groups; however, no significant difference was observed between the cholinesterase activities of muscles in control and treatment groups. Micronucleus incidence in treatment groups was higher than that in the control. Our study indicates that fenpropathrin altered the antioxidative enzyme status, inhibited cholinesterase activity in brain, and exhibited potential genotoxic effects in the fish Pethia conchonius.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-22

How to Cite

Deshpande, A. V., & Kadadevaru, G. G. (2023). Fenpropathrin Induces Oxidative Stress, Inhibits Cholinesterase, and Causes Genotoxicity in <i>Pethia conchonius</i> (Hamilton, 1822). Journal of Ecophysiology and Occupational Health, 23(4), 273–283. https://doi.org/10.18311/jeoh/2023/34615

Issue

Section

Research Article
Received 2023-08-01
Accepted 2023-10-03
Published 2023-11-22

 

References

Yang C, Lim W, Song G. Mediation of oxidative stress toxicity by pyrethroid pesticides in fish. Comp Biochem Physiol C. 2020; 234:108758, 1. https://doi.org/10.1016/j. cbpc.2020.108758 DOI: https://doi.org/10.1016/j.cbpc.2020.108758

Abubakar Y, Tijjani H, Egbuna C, Adetunji CO, Kala S, Kryeziu TL, Ifemeje JC, Patrick-Iwuanyanwu KC. Pesticides, history, and classification. In Natural Remedies for Pest, Disease and Weed Control. Egbuna C, Sawicka B, editors. Cambridge: Academic Press; 2020. p. 29-42. https://doi.org/10.1016/B978-0-12-819304-4.00003-8 DOI: https://doi.org/10.1016/B978-0-12-819304-4.00003-8

Tang W, Wang Di, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D. Pyrethroid pesticide residues in global environment: An overview. Chemosphere. 2018; 191:990-1007. https://doi.org/10.1016/j.chemosphere.2017.10.115 DOI: https://doi.org/10.1016/j.chemosphere.2017.10.115

Ravula AR, Yenagu S. Pyrethroid based pesticides – Chemical and biological aspects. Crit Rev Toxicol. 2021; 51(2):117-40. https://doi.org/10.1080/10408444.2021.1879 007

Fulton MH, Key PB, Delorenzo ME. Insecticide toxicity in fish. In Fish Physiology. Tiereny KB, Brauner TJ, editors. Academic Press; 2013. p. 309-68. https://doi.org/10.1016/B978-0-12-398254-4.00006-6 DOI: https://doi.org/10.1016/B978-0-12-398254-4.00006-6

Kaviraj A, Gupta A. Biomarkers of type II synthetic pyrethroid toxicity in freshwater fish. Biomed Research International. 2014; 2014:928063. https://doi.org/10.1155/2014/928063 DOI: https://doi.org/10.1155/2014/928063

Kanawai E, Budd R, Tjeerdema RS. Environmental fate and ecotoxicology of fenpropathrin. In Reviews of Envionmental Contamination and Toxicology. Whitacre DM, editor. New York: Springer New York; 2013. p. 77-93. https://doi.org/10.1007/978-1-4614-6470-9_3 DOI: https://doi.org/10.1007/978-1-4614-6470-9_3

Costa LG. The neurotoxicity of organochlorine and pyrethroid pesticides. In Handbook of Clinical Neurology. Lotti M, Bleecker ML, editors. Elsevier BV; 2015. p. 135-48 https://doi.org/10.1016/B978-0-444-62627-1.00009-3 DOI: https://doi.org/10.1016/B978-0-444-62627-1.00009-3

Takahashi N, Mikami N, Yamada H, Miyamoto J. Photodegradation of the pyrethroid insecticide fenpropathrin in water, on soil and on plant foliage. Pesticide Science. 1985; 16(2):119-31. https://doi.org/10.1002/ ps.2780160204 DOI: https://doi.org/10.1002/ps.2780160204

Fenpropathrin induces degeneration of dopaminergic neurons via disruption of the mitochondrial quality control system. Cell Death Discov. 2020; 6:78 https://doi. org/10.1038/s41420-020-00313-y DOI: https://doi.org/10.1038/s41420-020-00313-y

Kouzayha A, Al Ashi A, Al Akoum R, Al Iskandarani M, Budzinski H, Jaber F. Occurrence of pesticide residues in Lebanon’s water resources. Bull Environ Contam Toxicol. 2013; 91(5):503-9. https://doi.org/10.1007/s00128-013- 1071-y DOI: https://doi.org/10.1007/s00128-013-1071-y

Deng F, Sun J, Dou R, Yu X, Wei Z, Yang C, Zeng X, Zhu L. Contamination of pyrithroids in agricultural soils from Yangtze River delta, China. Sci Total Environ. 2020; 731:13981. https://doi.org/10.1016/j.scitotenv.2020.139181 DOI: https://doi.org/10.1016/j.scitotenv.2020.139181

Yao R, Yao S, Ai T, Huang J, Liu Y, Sun J. Organophosphate pesticides and pyrethroids in farmlands of Pearl River Delta, China: Regional Residue, Distributions and Risks. Int J Environ Res Public Health. 2023; 20(2):1017. https:// doi.org/10.3390/ijerph20021017 DOI: https://doi.org/10.3390/ijerph20021017

Birnie-Gauvin K, Costantini D, Cooke SJ, Willmore WG. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish and Fisheries. 2017; 18(5):928-42. https://doi.org/10.1111/faf.12215 DOI: https://doi.org/10.1111/faf.12215

Stara A, Bellinvia R, Valisek J, Strouhova A, Kouba A, Faggio C. Acute exposure of common yabby (Cherax destructor) to the neonicotinoid pesticide. Sci Total Environ. 2019; 665:718-23. https://doi.org/10.1016/j.scitotenv.2019.02.202 DOI: https://doi.org/10.1016/j.scitotenv.2019.02.202

Stara A, Machova J, Velisek J. Effect of chronic exposure to prometryne on the oxidative stress and antioxidant response in early life stages of common carp (Cyprinus carpio L.). Neuroendocrinol lett. 2012; 33(3):130-5. https:// doi.org/10.1016/j.etap.2011.12.019 DOI: https://doi.org/10.1016/j.etap.2011.12.019

Davico CE, Loteste A, Parma MJ, Poletta G, Simoniello MF. Stress oxidative and genotoxicity in Prochilodus lineatus (Valenciennes, 1836) exposed to commercial formulation of insecticide cypermethrin. Drug Chem Toxicol. 2017; 43(1):79-84. https://doi.org/10.1080/01480545.2018.14976 43 DOI: https://doi.org/10.1080/01480545.2018.1497643

Slaninova A, Smutana M, Modra H, Svobodova H. A review: Oxidative stress in fish induced by pesticides. Neuroendocrinol Lett. 2009; 302–12.

Assis CRD, Bezerra RS, Carvalho LB Jr. Fish cholinesterases as biomarkers of organophosphorus and carbamate pesticides. In Pesticides in modern world-book 5. Stoytcheva M, editor. Intech, Rijeka; 2011. p. 253-78.

Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML. Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment. Toxicology. 2002; 171(1):3-59. https://doi. org/10.1016/S0300-483X(01)00569-8 DOI: https://doi.org/10.1016/S0300-483X(01)00569-8

Badiou A, Belzunces LP. Is acetylcholinesterase a pertinent biomarker to detect exposure of pyrethroids? A study case with deltamehrin. Chemi-Biol Interact. 2008; 175(1-3):406- 9. https://doi.org/10.1016/j.cbi.2008.05.040 DOI: https://doi.org/10.1016/j.cbi.2008.05.040

De Assis HCD, Nicareta L, Salvo LM, Klemz C, Truppel JH, Calegari R. Biochemical biomarkers of exposure to deltamethrin in freshwater fish, Ancistrus multispinis. Braz Arch Biol Technol. 2009; 52(6):1401-7. https://doi. org/10.1590/S1516-89132009000600012 DOI: https://doi.org/10.1590/S1516-89132009000600012

Kumar A, Rai DK, Sharma B, Pandey RS. λ-cyhalothrin and cypermethrin induced in vivo alterations in the activity of acetylcholinesterase in a freshwater fish, Channa punctatus (Bloch). Pesticide Biochemistry and Physiology. 2009; 93(2):96-9. https://doi.org/10.1016/j.pestbp.2008.12.005 DOI: https://doi.org/10.1016/j.pestbp.2008.12.005

Marigoudar SR, Nazeer Ahmed R, David M. Cypermethrin induced: In vivo inhibition of the acetylcholinesterase activity in functionally different tissues of the freshwater teleost, Labeo rohita (Hamilton). Environ Toxicol Chem. 2009; 91(6):1175-82. https://doi. org/10.1080/02772240802577282 DOI: https://doi.org/10.1080/02772240802577282

Al-Sabti K, Metcalfe CD. Fish micronuclei for assessing genotoxicity in water. Mutat Res. 1995; 343(2-3):121-35. https://doi.org/10.1016/0165-1218(95)90078-0 DOI: https://doi.org/10.1016/0165-1218(95)90078-0

Sula E, Aliko V, Pagano M, Faggio C. Digital light microscopy as a tool in toxicological evaluation of fish erythrocyte morphological abnormalities. Microsc Res Tech. 2019; 83(4):362-9. https://doi.org/10.1002/jemt.23422 DOI: https://doi.org/10.1002/jemt.23422

Carrasco KR, Tilbury Kl, Myers MS. An assessment of the piscine micronuclei test as an in situ biological indicator of chemical contaminant effects. Can J Fish Aquat Sci. 1990; 47(11):2123-36. https://doi.org/10.1139/f90-237 DOI: https://doi.org/10.1139/f90-237

Bhattacharya H, Zhang SC, Wang YJ. Embryonic development of the rosy barb Puntius conchonius Hamilton 1822 (Cyprinidae). Tropical Zoology. 2005; 18(1):25–37. https://doi.org/10.1080/03946975.2005.10531212 DOI: https://doi.org/10.1080/03946975.2005.10531212

Timmermans LPM. Early development and differentiation in fish, Sarsia. 1987; 72:331-9. https://doi.org/10.1080/0036 4827.1987.10419731 DOI: https://doi.org/10.1080/00364827.1987.10419731

Çek S. Early gonadal development and sex differentiation in rosy barb (Puntius conchonius). Animal Biology. 2006; 56:335-50. https://doi.org/10.1163/157075606778441895 DOI: https://doi.org/10.1163/157075606778441895

Kumar S, Pant SC. Comparative effects of the sublethal poisoning of zinc, copper and lead on the gonads of the teleost Puntius conchonius ham. Toxicol Lett. 1984; 23(2):189-94. https://doi.org/10.1016/0378-4274(84)90125-5 DOI: https://doi.org/10.1016/0378-4274(84)90125-5

Kumar S, Pant SC. Renal pathology in fish (Puntius conchonius, Ham) following exposure to acutely lethal and sublethal concentrations of monocrotophos. Bull Environ Contam Toxicol. 1985; 35(2):228-33. https://doi. org/10.1007/BF01636503 DOI: https://doi.org/10.1007/BF01636503

Gill TS, Tewari H, Pande J, Lal S. In vivo tissue enzyme activities in rosy barb (Pethia conchonius Hamilton) experimentally exposed to lead. Bull Environ Contam Toxicol. 1991; 47(6):939-46. https://doi.org/10.1007/ BF01689527 DOI: https://doi.org/10.1007/BF01689527

OECD, Test No. 203. Fish, Acute Toxicity Test, 2019. OECD Guidelines for the Testing of Chemicals, Section 2, Paris, OECD Publishing; 2019. https://doi. org/10.1787/9789264069961-en

Finney DJ. Probit Analysis, Cambridge: University Press; 1971

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951; 193:265-75. https://doi. org/10.1016/S0021-9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a sample assay for superoxide dismutase. Journal of Biological Chemistry. 1972; 247(10):3170-5. https://doi.org/10.1016/S0021- 9258(19)45228-9 DOI: https://doi.org/10.1016/S0021-9258(19)45228-9

Claiborne A. Catalase activity. In Handbook of Methods for Oxygen Radical Research. Greenwald RA, editor. Boca Raton, Florida, USA: CRC Press; 1985. p. 283-4.

Braughler JM, Chase RL, Pregenzer JF. Oxidation of ferrous iron during peroxidation of various lipid substrates. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid metabolism. 1987; 921(3):457-64. https://doi. org/10.1016/0005-2760(87)90072-5 DOI: https://doi.org/10.1016/0005-2760(87)90072-5

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25(1):192–205. https://doi. org/10.1016/0003-2697(68)90092-4 DOI: https://doi.org/10.1016/0003-2697(68)90092-4

Ellman GL, Courtney Jr. KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7:88–90. https://doi.org/10.1016/0006-2952(61)90145-9 DOI: https://doi.org/10.1016/0006-2952(61)90145-9

Suares Rocha P, Deutschmann B, Hollert H. In situ determination of genotoxic effects in fish erythrocytes using comet and micronucleus assays. In situ Bioavailability and Toxicity of Organic chemicals in Aquatic Systems. Seiler T, Brinkmann M, editors; 2019. p. 115-29. https://doi. org/10.1007/7653_2019_40 DOI: https://doi.org/10.1007/7653_2019_40

Hammer O, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronics. 2001; 4(1):9. Available from: palaeo-electronica.org/2001_1/past/issue1_01.htm

Ahmad F, Ali SS, Shakoori AR. Sublethal effects of Danitol (Fenpropathrin), a synthetic pyrethroid, on freshwater Chinese grass carp, Ctenopharyngodon idella. Folia Biologica, (Krakow). 1995; 43:151-9.

Wang Y, Yang G, Shen W, Xu C, Di S, Wang, D, Li X, Wang X., Wang Q. Synergistic effect of fenpropathrin and paclobutrazol on early life stages of zebrafish (Danio rerio). Environ Pollut. 2020; 266. https://doi.org/10.1016/j. envpol.2020.115067 DOI: https://doi.org/10.1016/j.envpol.2020.115067

Banaee M, Sureda A, Zohiery F, Nematdoust Hagi B, Garanzini DS. Alterations in biochemical parameters of the freshwater fish, Alburnus mossulensis, exposed to sub-lethal concentrations of Fenpropathrin. International Journal of Aquatic Biology. 2014; 2(2):58–68. https://doi. org/10.22034/ijab.v2i2.32

Ullah R, Zuberi A, Ullah S, Ullah I, Dawar FU. Cypermethrin induced behavioural and biochemical changes in mahseer, Tor putitora. J Toxicol Sci. 2014; 39:829-36. https://doi.org/10.2131/jts.39.829 DOI: https://doi.org/10.2131/jts.39.829

Özok N. Effects of cypermethrin on antioxidant enzymes and lipid peroxidation of Lake Van fish (Alburnus tarichi). Drug Chem Toxicol. 2019; 43(1)51-6. https://doi.org/10.10 80/01480545.2019.1660363 DOI: https://doi.org/10.1080/01480545.2019.1660363

Vutukuru SS, Chintada S, Madhavi KR, Venkateswara Rao J, Anjaneyulu Y. Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiol Biochem. 2006; 32(3):221-9. https://doi.org/10.1007/s10695-006-9004-x DOI: https://doi.org/10.1007/s10695-006-9004-x

Kirici M, Turk C, Caglayan C, Kirici M. Toxic effects of copper sulphate pentahydrate on antioxidant enzyme activities and lipid peroxidation of freshwater fish Capoeta umbla (Heckel, 1843) tissues. Applied Ecology and Environmental Research. 2017; 15(3):1685-96. https://doi. org/10.15666/aeer/1503_16851696

Yonar ME, Ispir U, Yonar SM, Kirici M. Effect of copper sulphate on the antioxidant parameters in the rainbow trout fry, Oncorhynchus mykiss. Cell and Molecular Biology. 2016; 62(6):55-8. https://doi.org/10.15666/aeer/1503_16851696 DOI: https://doi.org/10.15666/aeer/1503_16851696

Abdelkhalek NKM, Ghazy EW, Adbel-Daim MM. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Orechromis niloticus: Impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res. 2014; 22(4):3023-31. https://doi. org/10.1007/s11356-014-3578-0 DOI: https://doi.org/10.1007/s11356-014-3578-0

Ghelichpour M, Mirghaed A, Dawwod MAO, Hoseinifar SH, Doan HV. Alteration of hematological and antioxidant parameters in common carp (Cyprinus carpio) fed olive (Olea europea) leaf extract after exposure to Danitol®. Aquac Res. 2020; 52(3):1–8. https://doi.org/10.1111/are.14964 DOI: https://doi.org/10.1111/are.14964

Hoseinifar SH, Yousefi S, Doan HV, Ashouri G, Gioacchini G, Maradonna F, Carnevali O. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Rev Fish Sci Aquac. 2020; 29(2):198–217. https://doi.org/10.1080/23308249.2020.17 95616 DOI: https://doi.org/10.1080/23308249.2020.1795616

Do Carmo Langiano CV, Martinez CBR. Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilotus lineatus. Comp Biochem Physiol C. 2008; 147(2):222-31. https://doi.org/10.1016/j.cbpc.2007.09.009 DOI: https://doi.org/10.1016/j.cbpc.2007.09.009

Filho DW, Torres MA, Tribess TB, Pedrosa RC, Soares CHL. Influence of season and pollution on the antioxidant defences of the cichlid fish acara (Geophagus brasiliensis). Braz J Med Biol Res. 2001; 34(6):719-26. https://doi. org/10.1590/S0100-879X2001000600004 DOI: https://doi.org/10.1590/S0100-879X2001000600004

Üner N, Özcan Oruç E, Canli M, Sevgler Y. Effects of cypermethrin on antioxidant enzyme activities and lipid peroxidation in liver and kidney of freshwater fish, Oreochromis niloticus, and Cyprinus carpio (L.). Bull Environ Contam Toxicol. 2001; 67(5):657-64. https://doi. org/10.1007/s001280174 DOI: https://doi.org/10.1007/s001280174

Kushwaha M, Verma S, Chatterjee S. Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: A short review of its usage, toxicity, and biodegradation. J Environ Qual. 2016; 45(5):1478-89. https://doi.org/10.2134/jeq2016.03.0100 DOI: https://doi.org/10.2134/jeq2016.03.0100

Ullah S, Li Z, Zuberi A, Arifeen MZU, Baig MMFA. Biomarkers of pyrethroid toxicity in fish. Environ Chem Lett. 2019; 17(2):945-73. https://doi.org/10.1007/s10311- 018-00852-y DOI: https://doi.org/10.1007/s10311-018-00852-y

Ensibi C, Hernandez-Moreno D, Miguez Santiyan MP, Daly Yahya MN, Rodriguez FS, Perez-Lopez M. Effects of carbofuran and deltamethrin on acetylcholinesterase activity in brain and muscle of the common carp. Environ Toxicol. 2014; 29(4):386-93. https://doi.org/10.1002/ tox.21765 DOI: https://doi.org/10.1002/tox.21765

Schmid W. The micronucleus test. Mutat Res. 1975; 31:9- 15. https://doi.org/10.1016/0165-1161(75)90058-8 DOI: https://doi.org/10.1016/0165-1161(75)90058-8

Ryu J-C, Kim K-R, Kim H-J, Ryu E-K, Lee S-Y, Jung S-O, Youn J-Y, Kim M-H, Kwon O-S. Evaluation of the genetic toxicity of synthetic chemicals (II). A pyrethroid insecticide, fenpropathrin. Arch Pharmacal Res. 1996; 19:251-7. https:// doi.org/10.1007/BF02976235 DOI: https://doi.org/10.1007/BF02976235

Surralles J, Xamena N, Creus A, Catalan J, Norppa H, Marcos R. Induction of micronuclei by five pyrethroid insecticides in whole-blood and isolated human lymphocyte cultures. Mutat Res. 1995; 341(3):169-84. https://doi. org/10.1016/0165-1218(95)90007-1 DOI: https://doi.org/10.1016/0165-1218(95)90007-1