An Overview of Dietary Approaches to Prevent the Development of Diabetic Retinopathy
DOI:
https://doi.org/10.21048/ijnd.2018.55.3.18193Keywords:
Diabetic retinopathy, exogenous advanced glycation end-products, microvascular complicationAbstract
Various researchers suggest that in up to 50% of patients with type 1 diabetes and 30% of those with type II diabetes, potentially vision-threatening retinal changes develop over time. Diabetic retinopathy is a common micro-vascular complication of diabetes mellitus. The present review outlines the dietary strategies to manage these complications of diabetes mellitus and studies the relationship between diet and retinopathy-associated risk factors in the development and progression of diabetic retinopathy. Though retinopathy therapy is currently limited to invasive procedures like laser photocoagulation and vitrectomy but there is a paradigm shift in favor of a preventive and protective, natural and safe dietary approach which can be used in treatment or prevention of diabetic retinopathy. Dietary carbohydrates, fats, proteins, dietary fibers, vitamins, antioxidants, minerals, phyto-estrogens, exogenous advanced glycation end-products, herbs, spices and protective dietary approaches play a role in development of diabetic retinopathy. This rationale can be applied to food interventions e.g. changing the composition of diet which favors metabolic improvements in type II diabetes and diabetic retinopathy. The ophthalmologists should encourage an interdisciplinary approach with endocrinologists and dietitian for optimal care of diabetic patient so as to prevent the development of diabetic retinopathy.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in IJND are distributed under a creative commons license. The journal allows the author(s) to hold the copyright of their work (all usages allowed except for commercial purpose).
Please contact us at editor@informaticsglobal.com for permissions related to commercial use of the article(s).
Accepted 2018-07-04
Published 2018-07-05
References
Wild, S., Roglic, G., Green, A., Sicree, R. and King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diab. Care, 2004, 27, 047–1053.
Anjana, R.M., Pradeepa, R., Deepa, M., Datta, M., Sudha, V., Unnikrishnan, R., Bhansali A., Joshi, S.R., Joshi, P.P., Yajnik, C.S., Dhandhania, V.K., Nath, L.M., Das A.K., Rao, P.V. and Madhu, S.V. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: Phase I results of the Indian Council of Medical Research – India Diabetes (ICMR–INDIAB) study. Diabetol., 2011, 54(12), 3022–3027.
Fong, D.S., Aiello, L.P., Ferris, F.L. and Klein, R., Diabetic retinopathy. Diab.Care, 2004, 27, 2540 -2553.
UK Prospective Diabetes Study Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 1998, 352, 837-853.
Fong, D.S., Aiello, L., Gardner, T.W., King, G.L., Blankenship, G. and Cavallerano, J.D., et al. Retinopathy in diabetes. Diab. Care, 2004 a, 27(1), S84–S87.
Mohamed, Q., Gillies, M.C. and Wong, T.Y. Management of diabetic retinopathy: a systematic review. J. Am. Med. Assoc., 2007, 298, 902–916.
Marshall, S.M. and Flyvbjerg, A. Prevention and early detection of vascular complications of diabetes. Br. Med. J., 2006, 333, 475–480.
Keenan, H.A., Costacou, T., Sun, J.K., Doria, A., Cavellerano, J., Coney, J., Orchard, T.J., Aiello, L.P. and King, G.L. Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration: the 50-year medalist study. Diab. Care, 2007, 30, 1995-1997.
David, K., Cundiff and Claudio R. Nigg. Diet and Diabetic Retinopathy: Insights from the Diabetes Control and Complications Trial (DCCT) Med.Gen. Med., 2005, 7(1), 3.
Jenkins, D.J.,Wolever, T.M. and Taylor, R.H., "Glycemic index of foods: a physiological basis for carbohydrate exchange”. Am. J. Clin. Nutr., 1981, 34(3), 362–366.
Kohner, E.M., Aldington, S.J., Stratton, I.M., Manley, S.E., Holman, R.R., Matthews, D.R. and Turner, R.C. United Kingdom Prospective Diabetes Study, 30: diabetic retinopathy at diagnosis of non-insulin-dependent diabetes mellitus and associated risk factors. Arch. Ophthalmol, 1998, 116, 297–303.
Kohner, E.M., Stratton, I.M., Aldington, S.J., Holman, R.R. and Matthews, D.R. UK Prospective Diabetes Study (UKPDS) Group. Relationship between the severity of retinopathy and progression to photocoagulation in patients with Type 2 diabetes mellitus in the UKPDS (UKPDS 52) Diabet. Med., 2001, 18, 178–184.
Diabetes Control and Complications Trial Research Group. Hypoglycemia in the Diabetes Control and Complications Trial. Diabetol., 1997, 46271–46286.
The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications. Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy New Eng. J. Med., 2000, 342(6), 381– 389.
UK Prospective Diabetes Study (UKPDS) Group. UK Prospective Diabetes Study (UKPDS). VIII. Study design, progress and performance. Diabetol., 1991, 34, 877–90.
Madsen-Bouterse S.A. and Kowluru, R.A. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev. Endocr. Metab. Disord., 2008, 9, (4), 315-327.
Allen, D.A., Yaqoob, M.M. and Harwood, S.M. Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J. Nutr. Biochem., 2005, 16, 705–713.
Buyken, A.E., Flood, V., Empson, M., Rochtchina, E., Barclay, A.W., Brand-Miller, J. and Mitchell, P. Carbohydrate nutrition and inflammatory disease mortality in older adults. Am. J. Clin. Nutr., 2010a, 92, 634–643.
Node, K. and Inoue, T. Postprandial hyperglycemia as an etiological factor in vascular failure. Cardiovasc. Diabetol., 2009, 8, 23.
Anderson, D.H., Mullins, R.F., Hageman, G.S. and Johnson, L.V. A role for local inflammation in the formation of drusen in the aging eye. Am. J. Ophthalmol., 2002, 134, 411–431.
Hageman, G.S., Luthert, P.J., Victor Chong, N.H., Johnson, L.V., Anderson, D.H. and Mullins, R.F. An integrated hypothesis that considers drusen as biomarkers of immunemediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog. Retin. Eye. Res., 2001, 20, 705–732.
Joussen, A.M., Poulaki, V., Le, M.L., Koizumi, K., Esser, C., Janicki, H., Schraermeyer, U., Kociok, N., Fauser, S., Kirchhof, B. and Kern T.S. and Adamis A.P. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB. J., 2004, 18, 1450–1452.
Mohr, S. Potential new strategies to prevent the development of diabetic retinopathy. Expert, Opin. Investig. Drugs, 2004, 13, 189–198.
Engerman, R.L. and Kern, T.S. Hyperglycemia as a cause of diabetic retinopathy. Metab., 1986, 35, 20–23.
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetol., 2005, 54, 1615–1625.
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414, 813–820.
Nishikawa, T. and Araki, E. Investigation of a novel mechanism of diabetic complications impacts of mitochondrial reactive oxygen species. Rinsho Byori., 2008, 56, 712–719.
Nishikawa, T., Edelstein, D., Du, XL., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M.A., Beebe, D., Oates, P.J., Hammes, H.P., Giardino, I. and Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000, 404, 787–790.
Chiu C.J. and Taylor, A. Dietary hyperglycemia,glycemic index and metabolic retinal diseases, Prog. Retin. Eye. Res., 2011, 30(1), 18–53.
Hermansen, M.L.F., Eriksen, N.M.B., Mortensen, L.S., Holm, L. and Hermansen, K. Can the Glycemic Index (GI) be used as a tool in the prevention and Management of Type 2 Diabetes? Rev. Diabet. Stud., 2006, 3(2), 61–71.
Whitcomb, E.A., Chiu, C.J. and Taylor, A. Dietary glycemia as a determinant of health and longevity. Mol. Asp. Med., 2015, 46, 14–20.
Kostolanska, J., Jakus, V. and Barak, L. HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metabol., 2009, 22, 433–442.
Uchiki, T., Weikel, K.A., Jiao, W., Shang, F., Caceres, A., Pawlak, D., Handa, J.T., Brownlee, M., Nagaraj, R. and Taylor, A. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging and age-related disease (in nondiabetics) Aging Cell., 2012, 11, 1–13.
Singh, R., Barden, A., Mori, T. and Beilin, L. Advanced glycation end-products: A review. Diabetol., 2001, 44, 129–146.
Augustin, A.J., Breipohl, W., Boker, T., Lutz, J. and Spitznas, M. Increased lipid peroxide levels and myeloperoxidase activity in the vitreous of patients suffering from proliferative diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol., 1993, 231(11), 647–650.
Ferris, F.L., 3rd, Chew, E.Y. and Hoogwerf, B.J. Serum lipids and diabetic retinopathy. Early Treatment Diabetic Retinopathy Study Research Group. Diabetes Care, 1996, 19(11), 1291–1293.
Chew, E.Y., Klein, M.L., Ferris, F.L., 3rd, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch. Ophthalmol., 1996, 114(9), 1079–1084.
Van Eck WF. The effect of a low fat diet on the serum lipids in diabetes and its significance in diabetic retinopathy. Am. J. Med. 1959, 27, 196–211.
Duncan, L.J., Cullen, J.F., Ireland, J.T., Nolan, J., Clarke, B.F. and Oliver, M.F. A three year trial of atromid therapy in exudative diabetic retinopathy. Diab., 1968, 17(7), 458-467.
Houtsmuller, A.J., Zahn, K.J. and Henkes, H.E. Unsaturated fats and progression of diabetic retinopathy. Doc. Ophthalmol., 1980, 48(2), 363–371.
Lyons, T.J., Jenkins, A.J., Zheng, D., et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest. Ophthalmol. Vis. Sci., 2004, 45(3), 910–918.
Kissebah, A.H., Kohner, E.M., Lewis, B., Siddiq, Y.K., Lowy, C. and Fraser, T.R. Plasmalipids and glucose/insulin relationship in non-insulin-requiring diabetics with and without retinopathy. Lancet, 1975, 1(7916), 1104–1108.
Rajagopal, R., Bligard, G.W., Zhang, S., Yin, L., Lukasiewicz, P. and Semenkovich, C.F., Functional Deficits Precede Structural Lesions in Mice with High-Fat Diet-Induced Diabetic Retinopathy. Diabetes, 2016, 65(4), 1072-84.
Alcubierre, N., Navarrete-Muño, E.M., Rubinat, E., Falguera, M., Valls, J. Traveset, A., Vilanova, M.B., Marsal, J.R., Hernandez, M., Casas, M.G., Gonzalez, D.M., Jurjo, C., Nadal, J.F., Vioque, J. and Mauricio, D. Association of low oleic acid intake with diabetic retinopathy in type 2 diabetic patients: a case–control study. Nutrition & Metabolism, 2016, 13, 40.
Hansen, S.H. "The role of taurine in diabetes and the development of diabetic complications,” Diab. Metabol. Res. Rev., 2001, 17(5), 330–346.
Huxtable, R.J. Physiological actions of taurine. Physiol. Rev.. 1992, 72, 101–163.
Hayes, K.C., Carey, R.E. and Schmidt, S.Y. Retinal degeneration associated with taurine deficiency in the cat. Science. 1975, 188, 949–951.
Franconi, F., Di Leo, M.A., Bennardini, F. and Ghirlanda, G. Is taurine beneficial in reducing risk factors for diabetes mellitus? Neurochem. Res., 2004, 29, 143–150.
Franconi, F., Loizzo, A., Ghirlanda, G. and Seghieri, G. Taurine supplementation and diabetes mellitus. Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9, 32–36.
Hansen, S.H. The role of taurine in diabetes and the development of diabetic complications. Diab. Metab. Res. Rev., 2001, 17, 330–346.
Schaffer, S.W., Azuma, J. and Mozaffari, M. Role of antioxidant activity of taurine in diabetes. Can. J. Physiol .Pharmacol., 2009, 87, 91–99.
Samuel Tung-Hsing Chiang, Shang-Min Yeh, Yi-Chen Chen, Shiun-Long Lin and JungKai Tseng, Investigation of the Protective Effects of Taurine against Alloxan-Induced Diabetic Retinal Changes via Electroretinogram and Retinal Histology with New Zealand White Rabbits, Intern. J. Endocrinol., 2014, 2014, Article ID 631549, 7 pages.
Song, M.K., Salam Basil, N.K., Roufogalis, D. and Huang, T.H.W. Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPAR-í£-dependent gene transcription in human retinal pigment epithelial cells: Possible implications for diabetic retinopathy treatment. Biochem. Pharmacol., 2011, 82(9), 1209-1218.
Roy, M.S., Stables, G., Collier, B., Roy, A. and Bou, E. Nutritional factors in diabetics with and without retinopathy. Am. J. Clin. Nutr., 1989, 50, 728–30.
Witkowska, A. and Borawska, M.H. The role of dietary fiber and its preparations in the protection and treatment of overweight. Pol. Merkur. Lekarski, 1999, 6(34), 224-6.
Visscher, T.L.S. and Seidell, J.C. The public health impact of obesity. Ann. Rev. Pub. Health, 2001, 22, 355-75.57. Kritchevsky, D. The role of dietary fiber in health and disease. J. Environ. Pathol. Toxicol.
Oncol., 1986, 6(3-4), 273-84.
Ganesan, S., Raman, R., Kulothungan, V. and Sharma, T. Influence of dietary-fibre intake on diabetes and diabetic retinopathy: Sankara Nethralaya-Diabetic Retinopathy Epidemiology and Molecular Genetic Study (report 26). Clin. Exp. Ophthalmol., 2012, 40, 288–94.
Salman, H., Bergman, M., Djaldetti, M., Orlin, J. and Bessler, H. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells. Biomed. Pharmacother., 2008, 62(9), 579-82.
Ma, Y., Hébert, H.R., Li, W., Bertone-Johnson, E.R., Olendzki, B., Pagoto, S.L. et al. Association between dietary fiber and markers of systemic inflammation in the Women's Health Initiative Observational Study. Nutr., 2008, 24(10), 941-9.
Ajani, U.A., Ford, E.S. and Mokdad, A.H. Dietary fiber and C-reactive protein: findings from National Health and Nutrition Examination Survey Data. J. Nutr., 2004, 134(5), 1181-5.
Qi, L., Dam, R.M.V., Liu, S., Franz, M., Mantzoros, C. and Hu, F.B. Whole-grain, bran and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diab. Care, 2006, 29(2), 207-11.
Jensen, M.J., Koh-Banerjee, P., Franz, M., Sampson, L., Grí¸nbí¦k, M. and Rimm, E.B Whole grains, bran and germ in relation to homocysteine and markers of glycemic control, lipids, and inflammation. Am. J. Clin. Nutr., 2006, 83(2), 275-83.
King, D.E., Egan, B.M., Woolson, R.F., Mainous III AG, Al-Solaiman, Y. and Jesri, A. Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level. Arch. Intern. Med., 2007, 167(5), 502-6.
Kowluru, R.A. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats. Retina, 2008, 49(4).
umm.edu/health/medical/altmed/supplement/quercetin
Kumar, B., Gupta, S.K., Nag, T.C., Srivastava, S., Saxena, R., Jha, K.A. and Srinivasan, B.P., Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats, Exp. Eye Res., 2014, 125, 193e202.
Tanaka, S., Yoshimura, Y., Kawasaki, R., Kamada, C., Tanaka, S. and Horikawa, C., Fruit intake and incident diabetic retinopathy with type 2 diabetes. Epidemiol., 2013, 24, 204–11.
Ganesan, S., Raman, R., Kulothungan, V. and Sharma, T. Influence of dietary-fibre intake on diabetes and diabetic retinopathy: Sankara Nethralaya-Diabetic Retinopathy Epidemiology and Molecular Genetic Study (report 26). Clin. Exp. Ophthalmol., 2012, 40, 288–94.
Kumar, B., Gupta, S.K., Srinivasan, B.P., Nag, T.C., Srivastava, S., Saxena, R. and Jha, K.A., Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc. Res., 2013, 87, 65–74.
Kumar, B., Gupta, S.K., Srinivasan, B.P., Nag, T.C., Srivastava, S. and Saxena, R., Hesperetin ameliorates hyperglycemia induced retinal vasculopathy via anti-angiogenic effects in experimental diabetic rats. Vasc. Pharmacol., 2012, 57(5–6), 201–207.
Bang-An Luo, Fan Gao and Lu-Lu Qin, The association between vitamin D deficiency and diabetic retinopathy in type 2 diabetes: A Meta-analysis of observational studies. Nutrients, 2017, 9(3), 307.
Matteucci, E. and Giampietro, O. Oxidative stress in families of type 1 diabetic patients. Diab. Care, 2000, 23, 1182-1186.
Fennell, J.P., Brosnan, M.J., Frater, A.J., Hamilton, C.A. and Alexander, M.Y., Adenovirusmediated over expression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene. Ther., 2002, 9, 110-117.
Zhu, H.L., Stewart, A.S., Taylor, M.D., Vijayasarathy, C., Gardner, T.J., et al. Blocking free radical production via adenoviral gene transfer decreases cardiac ischemia-reperfusion injury. Mol. Ther., 2000, 2, 470-475.
Pazdro, R. and Burgess, J.R., The Role of Vitamin E and Oxidative Stress in Diabetes Complications. Mech. Ageing Dev., 2010, 131, 276-286.
Bursell, S., Clermont, A., Aiello, L.P., Aiello, L.M. and Schlossman, D., Highdose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diab. Care, 1999, 22, 1245-1251.
Jakus, V., The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratisl. Lek. Listy., 2000, 101, 541-551.
Mustata, G.T., Rosca, M., Biemel, K.M., Reihl, O. and Smith, M.A., Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes, 2005, 54, 517-526.
Satyanarayana, A., Balakrishna, N., Pitla, S., Reddy, P.Y., Mudili, S., Lopamudra, P., Suryanarayana, P., Viswanath, K., Ayyagari, R. and Reddy, G.B., Status of B-Vitamins and Homocysteine in Diabetic Retinopathy: Association with Vitamin-B12 Deficiency and Hyperhomocysteinemia, PLoS One, 2011, 6(11), e26747.
Hammes, H.P., Du, X. and Edelstein, D. Benfotiamine blocks three major path-ways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med., 2003, 9, 294–299.
Lee, C.T.C., Emma, I., Gayton, Chir, M.B., Beulens, J.W., et al. Micronutrients and diabetic retinopathy: A systematic review. Ophthalmol., 2010, 117, 71–78.
Mayer-Davis, E.J., Bell, R.A., Reboussin, B.A., Rushing, J., Marshall, J.A., et al. The San Luis Valley Study: Antioxidant nutrient intake and diabetic retinopathy. Ophthalmol., 1998, 105, 2264–2270.
Kowluru, R.A., Kanwar, M., Chan, P. and Zhang, J.P. Inhibition of retinopathy and retinal metabolic abnormalities in diabetic rats with AREDS-based micronutrients. Arch. Ophthalmol., 2008, 126, 266–1272.
Misra, A., Vikram, N.K., Pandey, R.M., Dwivedi, M., Ahmad, F.U., et al. Hyperhomocysteinemia and low intakes of folic acid and vitamin B 12 in urban North India. Eur. J.Nutr., 2002, 41, 68–77.
Yajnik, C.S., Deshpande, S.S., Lubree, H.G., Naik, S.S., Bhat, D.S., et al. Vitamin B12 deficiency and hyperhomocysteinemia in rural and urban Indians. J. Assoc. Phys. Ind., 2006, 54, 775–782.
Yajnik, C.S., Deshpande, S.S., Jackson, A.A., Refsum, H. and Rao, S. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune maternal nutrition study. Diabetol., 2008, 51, 29–38.
Mooradian, A.D., Failla, M., Hoogwerf, B., Maryniuk, M. and Wylie-Rosett, J., Selected vitamins and minerals in diabetes. Diab. Care, 1994, 17, 464–479.
Miao, X., Sun, W., Miao, L., Fu, Y., Wang, Y., Su, G. and Liu, Q., Zinc and Diabetic Retinopathy, J. Diab. Res., 2013, 2013, 1-8.
Ulas, M., Orhan, C., Tuzcu, M., Ozercan, I.H., Sahin, N., Gencoglu, H., Komorowski, J.R. and Sahin, K. Anti-diabetic potential of chromium histidinate in diabetic retinopathy rats. BMC Complement Altern. Med., 2015, 15, 16.
Vincent, J.B. Recent advances in the biochemistry of chromiumb [III] J. Trace Elements. Exp. Med., 2003, 16, 227–36.
Cefalu, W.T. and Hu, F.B. Role of chromium in human health and in diabetes. Diab. Care, 2004, 27(11), 2741–51.
Sahin, K., Onderci, M., Tuzcu, M., Ustundag, B., Cikim, G., Ozercan, I.H., et al. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metab. Clin. Exp., 2007, 56, 1233–40.
Anderson, R.A. Chromium, glucose intolerance and diabetes. J. Am. Coll. Nutr., 1998, 17, 548–55.
Chen, S.H., Sun, Y.P. and Chen, X.S. Effect of jiangtangkang on blood glucose, sensitivity of insulin and blood viscosity in non-insulin dependent diabetes mellitus. Zhongguo. Zhong Xi Yi Jie He Za Zhi., 1997, 17(11), 666–8.
Ravina, A., Slezak, L., Rubal, A. and Mirsky, N. Clinical use of the trace element chromium [III] in the treatment of diabetes mellitus. J. Trace Elem. Exp. Med., 1995, 8, 183–90.
Mustafa Ulas, Cemal Orhan, Mehmet Tuzcu, Ibrahim Hanifi Ozercan, Nurhan Sahin, Hasan Gencoglu, James R. Komorowski and Kazim Sahin. Anti-diabetic potential of chromium histidinate in diabetic retinopathy rats. BMC Complement Altern. Med., 2015, 15, 16.
Geiger, H., Wanner, C. Magnesium in disease. Clin. Kidney J., 2012, 5, i25–38.
Kundu, D., Osta, M., Mandal, T., Bandyopadhyay, U., Ray, D. and Gautam, D., Serum magnesium levels in patients with diabetic retinopathy, J. Nat. Sci. Biol. Med., 2013, 4(1), 113–116.
Roy, M.S. and Janal, M.N. High caloric and sodium intakes as risk factors for progression of retinopathy in type 1 diabetes mellitus. Arch. Ophthalmol., 2010, 128(1), 33-9.
Wilcox, C.S. Metabolic and adverse effects of diuretics. Semin Nephrol., 1999, 19, 557–568.
Yang, L., Frindt, G. and Palmer, L.G. Magnesium modulates ROMK channel-mediated potassium secretion. J. Am. Soc. Nephrol., 2010, 21, 2109–2116.
American Diabetes Association. Magnesium supplementation in the treatment of diabetes.
Diab. Care, 1992, 15, 1065.
Whang, R. and Sims, G. Magnesium and potassium supplementation in the prevention of diabetic vascular disease. Medical hypotheses, 2000, 55( 3), 263–265.
Eckhert, C.D, Lockwood, M.K. and Shen, B. Influence of selenium on the microvasculature of the retina. Microvasc. Res., 1993, 45, 74-82.
Kowluru, R.A., Engerman, R.L. and Kern, T.S. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. VI. Comparison of retinal and cerebral cortex metabolism and effects of antioxidant therapy. Free Radic. Biol. Med., 1999, 26, 371-378.
Kowluru, R.A, Engerman, R.L, Case, G.L. and Kern, T.S. Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int., 2001, 38, 385-390.
Kowluru, R.A., Tang, J. and Kern, T.S. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes, 2001, 50, 1938-1942.
Kowluru, R.A. and Koppolu, P. Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Radic. Res., 2002, 36, 993-999.
Kowluru, R.A., Koppolu, P., Chakrabarti, S. and Chen, S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic. Res., 2003, 37, 1169-1180.
Glazier, M.G. and Bowman, M.A. A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch. Intern. Med., 2001, 161(9), 1161–1172.
Vahide B. Gencel, Mina M. Benjamin, Shafik N. Bahou and Raouf A. Khalil, Vascular Effects of Phytoestrogens and Alternative Menopausal Hormone Therapy in Cardiovascular Disease. Mini. Rev. Med. Chem., 2012, 12(2),149–174.
Oh, H.Y., Kim, S.S., Chung, H.Y. and Yoon, S. Isoflavone supplements exert hormonal and antioxidant effects in postmenopausal Korean women with diabetic retinopathy. J. Med. Fd., 2005, 8(1), 1-7.
Nakajima, M., Cooney, M.J., Tu, A.H., Chang, K.Y., Cao, J., Ando, A., An, G.J., Melia, M. and de Juan, E., Jr Normalization of retinal vascular permeability in experimental diabetes with genistein. Invest. Ophthalmol. Vis. Sci., 2001, 42(9), 2110–2114.
Ishibashi, T., Tanaka, K., Taniguchi, Y. Disruption of blood-retinal barrier in experimental diabetic rats: an electron microscopic study. Exp. Eye Res., 1980, 30, 401–410.
Mathews, M.K., Merges, C., McLeod, D.S. and Lutty, G.A. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 1997, 38, 2729–2741.
Jayaraman, K.S., Turmeric for diabetic blindness, nindia. Published online 6 October 2008, 293.
Gupta, S.K., Kumar, B., Nag, T.C., Agrawal, S.S., Agrawal, R., Agrawal, P., Saxena, R. and Srivastava, S. Curcumin Prevents Experimental Diabetic Retinopathy, in Rats Through Its Hypoglycemic, Antioxidant and Anti-Inflammatory Mechanisms. J. Ocular Pharmacol. Therapeut., 2011, 27(2), 123-30.
Deshpande, J., Shankaranarayanan, J., Bhanuprakash Reddy, G., Sreenivasa Reddy, S., Juturu, Soluble curcumin in the prevention of diabetic retinopathy via modulation of antioxidant activity and genetic pathways – In Vivo model, Ophthalmol. Vis. Syst., 2015, 3(1), 00077.
Qin, B., Kiran, M.D., Panickar, S. and Anderson, R.A., Cinnamon: Potential role in the prevention of insulin resistance, metabolic syndrome and type 2 diabetes. J. Diab. Sci. Technol., 2010, 4(3), 685–693.
Joussen, A.M., Poulaki, V., Le, M.L., et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J., 2004, 18, 1450–1452.122. http://www.ayurhelp.com/articles/ayurveda-medicinal-properties-tulsi-ocimumsanctum#. WSVUnGiGPIU
Gandhi Jerang, B.M ., Vrushabendra Swamy, Sarita Kotagiri, Tathagata Dey, S.M. Fariyaz, Indian Medicinal Plants with Antidiabetic and Related Beneficial Effects: A Review, Res. J. Pharmaceutical Biol. Chem. Sci., 2015, 6(3), 31.
Halim Eshrat, M. and Mukhopadhyay, A.K. Effect of Ocimum sanctum (Tulsi) and vitamin E on biochemical parameters and retinopathy in streptozotocin induced diabetic rats. Ind. J. Clin. Biochem., 2006, 21( 2), 181–188.
Khosla, P., Gupta, D.D. and Nagpal, RK. Effect of Trigonella foenum graecum (Fenugreek) on blood glucose in normal and diabetic rats. Ind. J. Physiol. Pharmacol., 1995, 39, 173–174.
Puri, D., Prabhu, K.M. and Murthy, P.S. Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds. Ind. J. Physiol. Pharmacol., 2002, 46, 457–462.
Vats V., Grover J.K. and Rathi S.S. Evaluation of antihyperglycemic and hypoglycemic effect of Trigonellafoenum-graecum Linn, Ocimum sanctum Linn and Pterocarpusmarsupium Linn in normal and alloxanized diabetic rats. J. Ethnopharmacol., 2002, 79, 95–10048
Preet, A., Siddiqui, M.R., Taha, A., Badhai, J., Hussain, M.E. and Yadava, P.K. Long-term effect of Trigonella foenum graecum and its combination with sodium orthovanadate in preventing histopathological and biochemical abnormalities in diabetic rat ocular tissues. Mol. Cell Biochem., 2006, 289, 137–147.
Baliga, Fernandes, Thilakchand, D'souza, Rao, Scientific validation of the antidiabetic effects of sygygium jambolanum D C (Black plum) a traditional medicinal plant of India. J. Altern. Complem. Med., 2013, 19(3),191-197.
Lee, Y.M., Gweon, O.C., Seo,Y.J., Im, J., Kang, M.J., Kim, M.J. and Kim, J.I., Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr. Res. Pract., 2009, 3(2), 156–161.
Gond, A.K. and Gupta, S.K., Diabetic Retinopathy: Role of Traditional Medicinal Plants in its management and their molecular mechanism. Intern. J. Pharmaceutical Sci. Invention, 2017, 6(6), 01-14.
Kumar, B., Gupta, S.K., Nag, T.C., Srivastava, S. and Saxena, R., Green tea prevents hyperglycemia induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats, Ophthal. Res., 2012, 47, 103–108.
Kirti Sinha, N.P., Mishra, J., Singh, S.P.S., Khanuja, Tinospora cordifolia (Guduchi), a reservoir plant for therapeutic applications: A Review. Ind. J. Traditional Knowledge, 2004, 3(3), 257-270.
Shyam S. Agrawal, Salma Naqvi, Suresh K. Gupta and Sushma Srivastava, Prevention and management of diabetic retinopathy in STZ diabetic rats by Tinospora cordifolia and its molecular mechanisms. Fd. Chem. Toxicol., 2012, 50(9), 3126–3132.
Archimowicz-Cyry³owska B. Adamek B, DroŸdzik M, Samochowiec L, Wójcicki J.Clinical Effect of Buckwheat Herb, Ruscus Extract and Troxerutin on Retinopathy and Lipids in Diabetic Patients. Phytotherapy Res., 1996, 10(8), 659–662.
Gao, D., Guo, Y., Li, X., Li, X., Li, Z., Xue, M., Ou, Z., Liu, M., Yang, M. and Liu S.S.Yang. An aqueous extract of Radix Astragali, Angelica sinensis, and Panax notoginseng is effective in preventing diabetic retinopathy. Evid. Based Complement Alternat. Med., 2013, 2013, 578165
Han, S.Y. et al. Component analysis and free radical-scavenging potential of Panax notoginseng and Carthamus tinctorius extracts. Chem. Biodivers., 2010, 7, 383–391.
Kim, J., Kim, C.S., Lee, Y.M., Sohn, E., Jo, K. and Kim, J.S. Litsea japonica extract inhibits neuronal apoptosis and the accumulation of advanced glycation end products in the diabetic mouse retina. Mol. Med. Rep., 2015, 12, 1075–1081.
Yuan, Y.Z., Yuan, F., Xu, Q.Y., Yu, J., Li, L. and Zhang, J.L. Effect of Fufang Xueshuantong Capsule on a rat model of retinal vein occlusion. Chin. J. Integr. Med., 2011, 17, 296–301.
Jian, W., Yu, S., Tang, M., Duan, H. and Huang, J. A Combination of the Main Constituents of Fufang Xueshuantong Capsules Shows Protective Effects against Streptozotocin-induced Retinal Lesions in Rats. J. Ethnopharmacol., 2015, 182, 50–56.
Agyemang, K., Han, L., Liu, E., Zhang, Y., Wang, T. and Gao, X., Recent advances in Astragalus membranaceus anti-diabetic research: pharmacological effects of its phytochemical constituents. Evidence Based Complement Alternat. Med., 2013, 2013, 654643
Ding, Y., Yuan, S., Liu, X., Mao, P., Zhao, C., Huang, Q., Zhang, R., Fang, Y., Song, Q., Yuan, D., Xie, P., Liu, Y. and Liu, Q. Protective effects of astragaloside IV on db/db mice with diabetic retinopathy. PLoS One, 2014, 9, e112207
h.Isah T. Rethinking Ginkgo biloba L. Medicinal uses and conservation. Pharmacogn Rev., 2015, 9, 140–148.
Brondino, N., De Silvestri, A., Re, S., Lanati, N., Thiemann, P., Verna, A., Emanuele, E. and Politi, P. A systematic review and meta-analysis of Ginkgo biloba in neuropsychiatric disorders: from ancient tradition to modern-day medicine. Evidence Based Complement Alternat. Med., 2013, 2013, 915691
Lim, D.W., Kim, J.G. and Kim, Y.T. Effects of dietary isoflavones from Puerariae radix on lipid and bone metabolism in ovariectomized rats. Nutrients, 2013, 5, 2734–2746.
Zhou, Y.X., Zhang, H. and Peng, C. Puerarin: a review of pharmacological effects. Phytother. Res., 2014, 28, 961–975.
Guilbaud, A., Niquet-Leridon, C., Boulanger, E., Tessier, F.J. and Delgado-Andrade, C. How can diet affect the accumulation of advanced glycation end-products in the human body?Foods, 2016, 5(4), 84.
Roth, G.S., Ingram, D.K. and Lane, M.A. Caloric restriction in primates and relevance to humans. Ann. N.Y. Acad. Sci., 2001, 928, 305–315.
Pallavi, R., Giorgio, M. and Pelicci, P.G. Insights into the beneficial effect of caloric/ dietary restriction for a healthy and prolonged life. Front. Physiol., 2012, 3, 318.
Masoro, E.J., Katz, M.S. and McMahan, C.A. Evidence for the glycation hypothesis of aging from the food-restricted rodent model. J. Gerontol., 1989, 44, B20–B22.
Masoro, E.J., McCarter, R.J., Katz, M.S. and McMahan, C.A. Dietary restriction alters characteristics of glucose fuel use. J. Gerontol., 1992, 47, B202–B208.
Cai, W., He, J.C., Zhu, L., Chen, X., Zheng, F., Striker, G.E. and Vlassara, H. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am. J. Pathol., 2008, 173, 327–336.
Cerami, C., Founds, H. and Nicholl, I. Tobacco smoke is a source of toxic reactive glycation products. Proc. Natl. Acad. Sci., USA. 1997, 94, 13915–13920.
Koschinsky, T., He, C.J., Mitsuhashi, T., et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci., USA. 1997, 94, 6474–6479.
Nicholl, I.D., Stitt, A.W., Moore, J.E., et al. Increased levels of advanced glycation end products in the lenses and blood vessels of cigarette smokers. Mol. Med., 1998, 4, 594–601.
Vlassara, H., Cai, W., Crandall, J., et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci., USA. 2002, 99, 15596–15601.
Henle, T., AGEs in foods: do they play a role in uremia? Kidney Int Suppl., 2003, S145S147.
Degen, J., Vogel, M., Richter, D., Hellwig, M. and Henle, T. Metabolic transit of dietary methylglyoxal. J. Agric. Fd. Chem., 2013, 61, 10253–10260.
Cai, W., Ramdas, M., Zhu, L., Chen, X., Striker, G.E. and Vlassara, H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci., USA. 2012, 109, 15888–15893.
Mohseni, F., Farhangi, M.A., Farajnia, S., Khoshbaten, M., Ajourlou, E. and Kakaei, F.Adherenceto Mediterranean nutritionpattern inpatients withnon-alcoholic fatty liver disease: relationship with metabolic risk factors and-UCP2-866G/A gene polymorphisms. CTNR, 2016, 14(1), 49–58.
Tur, J.A., Romaguera, D., Pons, A. The Diet Quality Index-International (DQI-I): is it a useful tool to evaluate the quality of the Mediterranean diet? Br. J. Nutr., 2005, 93(03), 369–376.
Georgoulis, M., Kontogianni, M., Margariti, A., Tiniakos, D., Fragopoulou, E., Zafiropoulou R., et al. Associations between dietary intake and the presence of the metabolic syndrome in patients with non alcoholic fatty liver disease. JHND 2015, 28(4), 409–415.
Carr, D.B., Utzschneider, K.M., Hull, R.L., Kodama, K., Retzlaff, B.M. and Brunzell, J.D. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes, 2004, 53(8), 2087– 2094.
Reaven, G.M. Role of insulin resistance in human disease. Diabetes, 1988, 37(12), 1595– 1607.
Esposito, K., Ciotola, M. and Giugliano, D. Mediterranean diet and the metabolic syndrome.
Mol. Nutr. Fd. Res., 2007, 51(10), 1268–1274.
Ghazaleh Hajiluian, Mahdieh Abbasalizad Farhangi, Leila Jahangiry Mediterranean dietary pattern and VEGF +405 G/C gene polymorphisms in patients with metabolic syndrome: An aspect of gene-nutrient interaction. PLOS ONE, 2017, https://doi.org /10.1371/ journal.pone. 0171637
Barylski, M., Kowalczyk, E., Banach, M., Ciecwierz, J., Pawlicki, L., Kowalski, J. Plasma total antioxidant activity in comparison with plasma NO and VEGF levels in patients with metabolic syndrome. Angiol., 2009, 60(1), 87–92.
Aiello, L.P. and Wong, J.S. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int., 2000, 77, S113–S119.
López, A.D., Babio, N., Martínez-González, M.A., Corella, D., Amor, A.J., Fitó, M., Estruch, R., Arós, F., Gómez-Gracia, E., Fiol, M., Lapetra, J., Serra-Majem, L., Basora, J., BasterraGortari, F.J., Zanon-Moreno, V., Muñoz, M.í. and Salas-Salvadó, J., Predimed study, Mediterranean diet, Retinopathy, nephropathy and microvascular diabetes complications: A post hoc analysis of a randomized trial, Diab. Care, 2015, 38(11), 2134-2141.
Evert, A.B., Boucher, J.L., Cypress, M., et al. Nutrition therapy recommendations for the management of adults with diabetes. Diab. Care, 2013, 36, 3821–3842.
Loktionov, A. Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases (review). JNB, 2003, 14(8), 426–451.
Willcox, B.J., Willcox, D.C., Todoriki, H., Fujiyoshi, A., Yano, K., He, Q., Curb, J.D., Suzuki, M. "Caloric Restriction, the Traditional Okinawan Diet and Healthy Aging: The Diet of the World's Longest-Lived People and Its Potential Impact on Morbidity and Life Span” (PDF), Ann. N.Y. Acad. Sci., 2007, 1114, 434–455.
Bradley, J., Willcox, D., Willcox, C., Todoriki, H., Fujiyoshi, A., Yano, K., He, Q., Curb, J.D. and Suzuki, M. Caloric restriction, the traditional Okinawan diet and healthy agingThe diet of the world's longest-lived people and its potential impact on morbidity and life span. Ann. N.Y. Acad. Sci., 2007, 1114, 434–455.
Craig Willcox, D. et al. "The Okinawan Diet: Health Implications of a Low-Calorie, NutrientDense, Antioxidant-Rich Dietary Pattern Low in Glycemic Load”. J. Amer. Coll. Nutr., 2009, 28, 500S–516S.
Zimmerman J.A., Malloy, V., Krajcik, R. Nutritional control of aging. Exp. Gerontol., 2003, 38, 47–52.
Sanz, A., Caro, P. and Barja, G. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J. Bioenerg. Biomembr., 2004, 36, 545–552.
Mair, W., Piper, M.D., Partridge, L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLOS ONE, 2005, Biol. 3, e223.
Abbott R.D., Curb, J.D. and Rodriguez, B.L. Effect of dietary calcium and milk consumption on risk of thromboembolic stroke in older middle-aged men: the Honolulu heart program. Stroke, 1996, 27, 813–818.
Yamori, Y., Murakami, S. and Ikeda, K., Fish and lifestyle-related disease prevention: experimental and epidemiological evidence for anti-atherogenic potential of taurine. Clin. Exp. Pharmacol. Physiol., 2004, 31, S20–S23.
Jenkins D.J., Kendall, C.W. and Marchie, A., Too much sugar, too much carbohydrate, or just too much? Am. J. Clin. Nutr., 2004, 79, 711–712.
Willcox, B.J. and Fuchigami Willcox, D.C, Isoflavone intake in Japanese and JapaneseCanadians. Am. J. Clin. Nutr. 1995, 61, 901.
Wood, J.G,, Rogina, B., Lavu, S., Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 2004, 430, 686–689.
Bray, G.A., Vollmer, W.M. and Sacks, F.M., A further subgroup analysis of the effects of theDASH diet and three dietary sodium levels on blood pressure: results of the DASHSodium Trial. Am. J. Cardiol., 2004, 94, 222–227.
Masoro, E.J. Caloric restriction and aging: controversial issues. J. Gerontol. A. Biol. Sci. Med. Sci., 2006, 61, 14–19.
Masoro, E.J. Hormesis and the antiaging action of dietary restriction. Exp. Gerontol., 1998, 33, 61–66.
Srinivasan, K., Antioxidant potential of spices and their active constituents. Crit.Rev.Fd.
Sci. Nutr., 2014, 54(3), 352-372.
Wärnberga, J., Nova, E., Romeo, J., Moreno, L.A., Sjöström, M. and Marcos, A. Lifestylerelated determinants of inflammation in adolescence. Br. J. Nutr., 2007, 98 Suppl 1: S11620.
Giugliano, D., Ceriello, A. and Esposito, K. The effects of diet on inflammation emphasis on the metabolic syndrome. J. Am. Coll. Cardiol., 2006, 48(4), 677-85.
Lopez-Garcia, Ee, Schulze, M.B., Meigs, J.B., Manson, J.E., Rifai, N., Stampfer, M.J.Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J. Nutr., 2005, 135(3), 562-6.
Nettleton, J.A., Steffen, L.M., Mayer-Davis, E.J., Jenny, N.S., Jiang, R., Herrington, D.M.
et al. Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin.Nutr., 2006, 83(6), 1369-79.
Geraldo, J.M., Alfenas, R.C.G. Papel da dieta na prevençí£o e no controle da inflamaçí£o crí´nica – evidíªncias atuais. Arq. Bras. Endocrinol. Metab., 2008, 52(6), 951-67.
Gannon, M.C., Nuttall, F.Q., Saeed, A., Jordan, K. and Hoover, H., An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes, Am. J. Clin.Nutr., 2003, 78(4), 734-741.
Díaz-López, A., Babio, N., Martínez-González, M.A., Corella, D., Amor, A.J., Fitó, M. Mediterranean diet, retinopathy, nephropathy and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diab. Care, 2015, 38, 2134–41.
American Diabetes Association, Nutrition Recommendations and Interventions for Diabetes: A position statement of the American Diabetes Association, Diab. Care, 2008, 31(1), S61S78.