Phytochemical Screening and Spectral Characterization of Portieria hornemannii from South East Coast of Tamil Nadu
DOI:
https://doi.org/10.21048/IJND.2021.58.S3.28411Keywords:
Phytochemical, Nutrition, Antibacterial Activity, Portieria hornemannii.Abstract
Seaweeds are macrothallus with numerous industrial and pharmaceutical applications. Recently researchers are gaining more interest in nutraceutical applications of seaweeds. Hence the present work focused on the nutraceutical importance, phytochemical importance and spectral characterisation of red seaweed Portieria hornemannii. Preliminary screening shows the presence of proteins, tannins, terpenoids, flavoniods, phenols, coumarins, quinones etc. The spectral characterization UV showed the peaks at 205 and 220 nm in 4.0 and 3.379 absorbence and FTIR shows the presence of functional groups such amine, amide, alkene etc., and from the GC-MS analysis the major active compounds was determined such as, n-hexadecanoic acid, oleic acid, neophytadiene, octadecanoic acid. The bioactive compounds present revealed its antibacterial activity of the ethanolic extract against the human pathogens such as Bacillus subtilis, Escherichia coli (5.2 ± 2.7 mm) Staphylococcus aureus (8.8 ± 7.3 mm) and Klebsiella pneumoniae (3.7 ± 2.0 mm). The Portieria hornemannii red seaweed pave way to discover new drugs and food supplements and could be a novel source for nutraceuticals.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
All the articles published in IJND are distributed under a creative commons license. The journal allows the author(s) to hold the copyright of their work (all usages allowed except for commercial purpose).
Please contact us at editor@informaticsglobal.com for permissions related to commercial use of the article(s).
References
Mabeau, S. and Fleurence, J. Seaweed in food products: biochemical and nutritional aspects. Trends Fd. Sci. Technol., 1993, 4, 103-107. DOI: https://doi.org/10.1016/0924-2244(93)90091-N
McHugh, D.J. A guide to the seaweed industry, FAO Fisheries technical paper 441. Food and Agriculture Organization of the United Nations, Rome, 2003.
Norziah, M.H. and Ching, CH.Y. Nutritional composition of edible seaweed Gracilaria changgi. Fd. Chem., 2000, 68, 69-76. DOI: https://doi.org/10.1016/S0308-8146(99)00161-2
Prabhasankar, P., Ganesan, P., Bhaskar, N., Hirose, A., Stephen, N. and Gowda, L.R. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Fd. Chem., 2009, 115, 501-508. DOI: https://doi.org/10.1016/j.foodchem.2008.12.047
MacArtain, P., Gill, CH.I.R., Brooks, M., Campbell, R. and Rowland, I.R. Nutritional Value of Edible Seaweed. Nutr. Rev., 2007, 65, 535-543. DOI: https://doi.org/10.1111/j.1753-4887.2007.tb00278.x
Cardozo, K.H.M., Guaratini, T., Barros, M.P. et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol., Part C, 2007, 146, 60-78. DOI: https://doi.org/10.1016/j.cbpc.2006.05.007
Alves de Sousa, A.P., Torres, M.R., Pessoa, C. et al. In vivo growth-inhibition of Sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydr. Polym., 2007, 69, 7-13. DOI: https://doi.org/10.1016/j.carbpol.2006.08.018
Wong, C.K., Ooi, V.E.C. and Ang, P.O. Protective effects of seaweeds against liver injury caused by carbon tetrachloride in rats. Chemosphere, 2000, 41, 173-176. DOI: https://doi.org/10.1016/S0045-6535(99)00407-5
Cho, Y.S., Jung, W.K., Kim, J.A., Choi, I.W. and Kim, S.K. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Fd. Chem., 2009, 116, 990- 994. DOI: https://doi.org/10.1016/j.foodchem.2009.03.051
Artan, M., Li, Y., Karadeniz, F., Lee, S.H., Kim, M.M. and Kim, S.K. Anti-HIV-1 activity of phloroglucinol derivate, 6,6, –bieckol, from Ecklonia cava. Bioorg. Med. Chem., 2008, 16, 7921-7926. DOI: https://doi.org/10.1016/j.bmc.2008.07.078
Choi, E.Y., Hwang, H.J., Kim, I.H. and Nam, T.J. Protective effects of a polysaccharide from Hizikia fusiformis against ethanol toxicity in rats. Fd. Chem. Toxicol., 2009, 47, 134-139. DOI: https://doi.org/10.1016/j.fct.2008.10.026
Zvyagintseva, T.N., Shevchenko, N.M., Nazarenko, E.L. Water-soluble polysaccharides of some brown algae of the Russian Far-East. Structure and biological action of low-molecular mass polyuronans. J. Exp. Mar. Biol. Ecol., 2005, 320, 123-131. DOI: https://doi.org/10.1016/j.jembe.2004.12.027
Noorjahan, A., Aiyamperumal, B. and Anatharaman, P. Characterization and Biochemical properties of Brown seaweed Sargassum tenerrimum (J.Aardh), Int. J. Pharm. Biolog. Sci., 2019, 9, 350-357.
Harborne, J.B. Phytochemical Methods, Chapman and Hall, Ltd., London, 1973, pp. 49-188.
Trease G. E. and W. C. Evans. Pharmacognosy, Brailliar Tiridal Can Macmillian Publishers, 11th edition, 1989.
Bauer, A.W., Kirby, W.M.M., Sherris, J.C. and Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45, 493-496. DOI: https://doi.org/10.1093/ajcp/45.4_ts.493
Hashimoto, A. and Kameoka, T. Applications of infrared spectroscopy to biochemical, food, and agricultural processes. Appl. Spectros. Rev., 2008, 43, 416- 451. DOI: https://doi.org/10.1080/05704920802108131
Hussain, K., Ismail, Z., Sadikun, A. and Ibrahim, P. Evaluation of Metabolic Changes in fruit of piper armentosum in various Seasons by Metabolomics using Fourier Transform Infrared (FTIR) Spectroscopy. Int. J. Pharm. Clin. Res., 2007, 1, 68-71.
Komal Kumar, J. and Devi Prasad, A.G. Identification and comparison of biomolecules in medicinal plants of Tephrosia tinctoria and Atylosia albicans by using FTIR Romanian. J. Biophys., 2011, 21, 63-71.
Sermakkani, M. and Thangapandian, V. GC-MS analysis of Cassia italica leaf methanol extract. Asian J. Pharm. Clin. Res., 2012, 5, 90-94.
Elezabeth, V.D. and Arumugam, S. GC-MS analysis of ethanol extract of Cyperusrotundus leaves. Int. J. Curr. Biotechnol., 2014, 2, 19-23.
Zheng, C.J., Yoo, J.S., Lee, T.G., Cho, H.Y., Kim, Y.H. and Kim, W.G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS let., 2005, 579, 5157-5162. DOI: https://doi.org/10.1016/j.febslet.2005.08.028
Pinto, M.E., Araujo, S.G., Morais, M.I., Sá, N.P., Lima, C.M. and Rosa, C.A. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An Acad Bras Cienc., 2017, 89, 1671-1681. DOI: https://doi.org/10.1590/0001-3765201720160908
Sahin, N., Kula, I. and Erdogan, Y. Investigation of antimicrobial activities of nonanoic acid derivatives. Fresenius Environ Bull., 2006, 5, 141-143.
Orhan, I.E., Özçelik, B. and Sener, B. Evaluation of antibacterial, antifungal, antiviral and antioxidant potentials of some edible oils and their fatty acid profiles. Turk. J. Biol., 2011, 35, 251-258. DOI: https://doi.org/10.3906/biy-0907-107
Walters, D., Raynor, L., Mitchell, A., Walker, R. and Walker, K. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathol., 2004, 157, 87-90. DOI: https://doi.org/10.1023/B:MYCO.0000012222.68156.2c
El-Din, S.M. and El-Ahwany, A.M. Bioactivity and phytochemical constituents of marine red seaweeds (Janiarubens, Corallina mediterranea and Pterocladiacapillacea). J. Taibah University Sci., 2016, 10, 471-484. DOI: https://doi.org/10.1016/j.jtusci.2015.06.004
Liu, X., Ma, Z., Zhang, J. and Yang, L. Antifungal compounds against Candida infections from traditional Chinese medicine. Bio. Med. Res. Int., 2017, 2017, 1-13. DOI: https://doi.org/10.1155/2017/4614183
Iauk, L., Acquaviva, R., Mastrojeni, S., Amodeo, A., Pugliese, M., Ragusa, M., et al. Antibacterial, antioxidant and hypoglycaemic effects of Thymus capitatus (L.) Hoffmanns. Et Link leaves’ fractions. J. Enzyme Inhib. Med. Chem., 2015, 30, 360-365. DOI: https://doi.org/10.3109/14756366.2014.930453
Kumar, N.N., Ramakrishnaiah, H., Krishna, V. and Deepalakshmi, A.P. Gc-ms analysis and antimicrobial activity of seed oil of Broussonetia papyrifera (l.) Vent. Int. J. Pharm. Sci. Res., 2015, 6, 3954-3960.
Xu, F., Yuan, Q.P. and Zhu, Y. Improved production of lycopene and ?carotene by Blakeslea trispora with oxygen-vectors. Process Biochem., 2007, 42, 289-293. DOI: https://doi.org/10.1016/j.procbio.2006.08.007
Lai, L.T., Tsai, T.H. and Wang, T.C. Application of oxygen vectors to Aspergillus terreus cultivation. J. Biosci. Bioeng., 2002, 94, 453-459. DOI: https://doi.org/10.1016/S1389-1723(02)80224-9
Peng, C., Huang, H., Ji, X., Liu, X., Ren, L., Yu, W., You, J. and Lu, J. Effects of nhexadecane concentration and a two-stage oxygen supply control strategy on arachidonic acid production by Mortierella appina ME-1. Chem. Eng. Technol., 2010, 33, 692-697. DOI: https://doi.org/10.1002/ceat.200900413
Taskin, E., Ozturk, M., Taskin, E. and Kurt, O. Antibacterial activities of some marine algae from the Aegean Sea (Turkey). Afr. J. Biotechbol., 2007, 6, 2746-2751. DOI: https://doi.org/10.5897/AJB2007.000-2439
Gupta, S., Rajauria, G. and Abu-Ghannam, N. Study of the microbial diversity and antimicrobial properties of Irish edible brown seaweeds. Int. J. Fd. Sci. Technol., 2010, 45, 482-489. DOI: https://doi.org/10.1111/j.1365-2621.2009.02149.x
Ely, R., Supriya, T. and Naik, C.G. Antimicrobial activity of marine organisms collected off the coast of South East India. J. Exp. Mar. Biol. Ecol., 2004, 309, 121-127. DOI: https://doi.org/10.1016/j.jembe.2004.03.010
Umamaheswari, R., Thirumaran, G. and Anantharaman, P. Antibacterial activity of marine macro alga (Chaetomorpha aerea) collected from Vellar estuary. Environ. Ecol., 2006, 24, 280-282.
Bansemir, A., Blume, M., Schröder, S. and Lindequist, U. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture., 2006, 252, 79-84. DOI: https://doi.org/10.1016/j.aquaculture.2005.11.051