Evaluation of Antioxidant Potentialities of Whole Fruit Juices from Ximenia americana Linn., Vitex doniana Sweet. and Annona senegalensis Pers

Jump To References Section

Authors

  • Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundere, Ngaoundere ,CM ORCID logo http://orcid.org/0000-0003-4023-6643
  • Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundere, Ngaoundere ,CM
  • Bioprocess Laboratory, Unit of Food Sciences and Nutrition, University Institute of Technology, University of Ngaoundere, Ngaoundere, Cameroon) ,CM

DOI:

https://doi.org/10.21048/IJND.2022.59.3.29266

Keywords:

Cameroon, Ximenia americana Linn, Vitex Doniana Sweet, Annona senegalensis Pers, Whole Fruit Juices, Physicochemical Characteristics, Antioxidant Potentialities

Abstract

Ximenia americana Linn. (Olacaceae)., Vitex doniana Sweet. (Verbenaceae) and Annona senegalensis Pers. (Annonaceae) are three endemic fruit species growing in dry African savannahs. The fruits produced by these species have unique and highly appreciated organoleptic characteristics (aromas and flavors). However, their consumption is limited to the localities where they are found. In addition, the rarity of scientific information on their technological and nutritional potentials constitute an obstacle to their valorization. To bridge this gap, a comparative evaluation of the antioxidant potential of the whole fruit juices from these species was carried out. After physicochemical characterization of the fruits, anti-radical power and reducing activity of the juices were determined using DPPH, ABTS, FRAP and TAC methods. The physicochemical analyses of A. senegalensis indicated values of 7.65 ± 0.99 % (proteins), 32.81 ± 1.08 % (total sugars), 3.98 ± 0.17 % (ash) in opposite to 5.68 ± 0.17 (proteins), 42.45 ± 1.54 % (total sugars), 2.03 ± 0.2 % (ash) of X. americana and 2.97 ± 0.74 % (proteins), 33.62 ± 1.79 % (total sugars), 1.36 ± 0.19 % (ash) of V. doniana. The A. senegalensis juice had the highest total phenolic and flavonoid contents respectively 1.22 ± 0.01 and 0.36 ± 0.03 g/100 g of FW compared to X. americana (731.93 ± 2.25 and 295.58 ± 1.67 g/100 g respectively) and V. doniana (633.18 ± 1.93 and 111.09 ± 2.44 respectively). A. senegalensis and X. americana had the highest anti-radical activities by DPPH (12.50 ± 0.01) compared to V. donianaand vitamin C standard (8.33 ± 0.02). The ABTS test for the juices from V. doniana and A. senegalensis (14.28 ± 0.01) was compared to X. Americana (9.90 ± 0.01) and vitamin C standard (6.66 ± 0.02). Juices from X. americana had the highest TAC reducing capacity (570.67 ± 1.14 mg EAA / 100 g of FW) compared to V. doniana (521.15 ± 1.93) and A. senegalensis (147.78 ± 2.75). The FRAP test indicated values of 1401.04 ± 1.82 mg/100 g of FW in opposite to X. americana (798.79 ± 1.51) and V. doniana (600.19 ± 2.37). Flavonoids are strongly correlated to antioxidant activity by FRAP (r=0.86) and DPPH (r = 0.96). Tannins (r = 0.98) are strongly correlated with the TAC test.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2022-07-13

How to Cite

Moffo Foning, L., Fombang, Édith, & Clergé, T. (2022). Evaluation of Antioxidant Potentialities of Whole Fruit Juices from <i>Ximenia americana</i> Linn., <i>Vitex doniana</i> Sweet. and <i>Annona senegalensis</i> Pers. The Indian Journal of Nutrition and Dietetics, 59(3), 255–274. https://doi.org/10.21048/IJND.2022.59.3.29266

Issue

Section

Original Articles
Received 2022-01-10
Accepted 2022-03-02
Published 2022-07-13

 

References

Abrantes S, Ligia P., Israel F., and Raquel M. (2015). Physical-chemical characteristics and antioxidant potential of seed and pulp of Ximenia Americana L. from the semiarid region of Brazil. African Journal of Biotechnologie., 14(20), 263-271. https://doi.org/10.5897/AJB2015.14452s DOI: https://doi.org/10.5897/AJB2015.14452

AFNOR. (1981). Recueil de normes françaises. Corps gras, graines oléagineuses, produits dérivés. 2ème édition. Paris (France). 438 p

AFNOR. (1982). Recueil des normes françaises des produits dérivés des fruits et légumes. Jus de fruits. 1ère edition. Paris (France). 327p

Ajenifujah-Solebo, S., and Aina, J. (2011). Physico-chemical Properties and Sensory Evaluation of Jam made from black-plum fruit (Vitex doniana). African Journal of Food, Agriculture, Nutrition and Development 11 (3), 4772-4784. https://doi.org/10.4314/ajfand.v11i3.66629 DOI: https://doi.org/10.4314/ajfand.v11i3.66629

Amiot-Carlin, M., Caillavet, F., Causse, M., Combris, P., Dallongeville, J., Padilla, M., Renard, C., Soler, L. (2007). Les fruits et légumes dans l'alimentation. Enjeux et déterminants de la consommation. Expertise scientifique collective, synthèse du rapport, INRA (France), 80 p.

Andjelkovic, M., Camp, J., Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., Verhe, R. (2006). Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry, 98, 23–31. https://doi.org/10.1016/j.foodchem.2005.05.044 DOI: https://doi.org/10.1016/j.foodchem.2005.05.044

Arbonnier, M. (2009). Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest. Ed. Quae, MNHN. France. 574 p.

Avaria, N., Power, P., Abbas, C. (2013). Moisture dependent physical properties of Moringa oleifera seed relevant in bulk handling and mechanical processing. Industrial Crops and Products, 42, 96-104. https://doi.org/10.1016/j.indcrop.2012.05.001 DOI: https://doi.org/10.1016/j.indcrop.2012.05.001

Baudin, B. (2020). Stress oxydant et protections antioxydantes. Revue Francophone des Laboratoires. Pages 22-30. https://doi.org/10.1016/S1773-035X(20)30159-3 DOI: https://doi.org/10.1016/S1773-035X(20)30159-3

Barreto, G. P., Benassi, M. T., Mercadante, A. (2009). Bioactive compounds from several tropical fruits and correlation by multivariate analysis to free radical scavenger activity. Journal of the Brazilian Chemical Society. 20(10), 1759-1944. https://dx.doi.org/10.1590/S0103-50531997000100001 DOI: https://doi.org/10.1590/S0103-50532009001000013

Bourokaa, A. (2012). Etude biochimique de l'adultération du jus de fruits. Microthèse. Unjiversité de Carthage. Institut National des SciencesAppliquées et de Technologie. Tunisie. 33p.

Bratt, P., Georgé, S., Bellamy, A., Chaffault, L., Scalbert, A., Mennen, L., Arnault, N, Amiot M (2006) Daily polyphenol intake in France from fruit and vegetables. Journal of Nutrition, 136, 2368-2373. https://doi.org/10.1093/jn/136.9.2368 DOI: https://doi.org/10.1093/jn/136.9.2368

Commission du Codex Alimentarius. (2000). Avant-projet de norme générale codex pour les jus et nectars de fruits. Rome. Codex@fao.org. 13p

Dajas, F., Andrés, A. C., Florencia, A., Carolina, E., Felicia, R. M. (2013). Neuroprotective actions of flavones and flavonols: mechanisms and relationship to flavonoid structural features. Cent Nerv Syst Agents Med Chem. 13, 30-33. https://doi.org/10.2174/1871524911313010005 DOI: https://doi.org/10.2174/1871524911313010005

Desaulniers, M., et Dubost, M. (2003). Table de composition des aliments. Département de nutrition. 3e édition. Université de Montréal. Canada.Djantou, E. B. (2006). Optimisation du broyage des mangues séchées (Manguifera indica var Kent): Influence sur les propriétés physicochimiques et fonctionnelles des poudres obtenues. These. Ecole Nationale Supérieure des Sciences Agro-Industrielles. Universite de Ngaoundere, Cameroun.

Dubois, M., Gilles, K., Hamilton, J., Roberts, P., Smith, F. (1956). Colorimetric method for determination of sugar and related substances. Analytical Chemistry. 28, 350–356. https://doi.org/10.1021/ac60111a017 DOI: https://doi.org/10.1021/ac60111a017

FAO. (2021).Fruits et légumes-éléments essentiels de ton alimentation. Année international des fruits et légumes. Note d’information. Rome. Disponible sur: www.fao.org/fruits-vegetable-2021/fr.

Fraga, C. G., Galleano, M., Verstraeten, S. V., Oteiza, P. I. (2010). « Basic biochemical mechanisms behind the health benefits of polyphenols ». Molecular Aspects of Medicine, 73, 136-148. https://doi.org/10.1016/j.mama.2010.09.006

Galleano, M., Verstraeten, S. V., Oteiza, P. I., Fraga, C. G. (2010). « Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis », Archives of Biochemistry and Biophysics. 501, 702-715. https://doi.org/10.1016/j.abb.2010.04.005 DOI: https://doi.org/10.1016/j.abb.2010.04.005

Harris, L., et Ray, S. (1935). Determination of ascorbic acid in urine. Method using titration with 2, 6 dichlorophenol indophenol. Lancet. 1, (176): 462.

Huang, D., Ou, B., Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53 (6), 1841-1856. https://doi.org/10.1021/jf030723c DOI: https://doi.org/10.1021/jf030723c

Kassandra, L., Araújo, V., Magnani, M., Nascimento, A., Souza, L., Epaminondas, S., Queiroz, N., Souza, G. (2014). Antioxidant Activity of Co-Products from Guava, Mango and Barbados Cherry Produced in the Brazilian Northeast. Molecules. 19, 3110-3119. https://doi.org/10.3390/molecules19033110 DOI: https://doi.org/10.3390/molecules19033110

Kim, K., Lee, S., Lee, Y., Jung, S., Park, Y., Shin, K., Kim, B. (2003). Anti-oxidant activities of the extracts from the herbs of Artemisia apiacea. Journal of Ethnopharmacology. 85, 69-72. DOI: https://doi.org/10.1016/S0378-8741(02)00338-0

Kjeldahl, J. (1883). Neue methode zur bestimmung des stickstoffs in organischen körpern. Z. Analytical Chemistry. 22, 366-382. https://doi.org/10.1007/BF01338151. DOI: https://doi.org/10.1007/BF01338151

Ky, K. (2008). Vitex doniana Sweet. PROTA (Plant Ressources of Tropical Africa) Wageningen, Netherlands. 10 JAN. 2016. http://www.prota4u.org/search.asp

Mahapatra, A., Mishra, S., Basak, U. C., Panda, P. C. (2012). Nutrient Analysis of Some Selected Wild Edible Fruits of Deciduous Forests of India; an Explorative Study towards Non Conventional Bio-Nutrition. Advance Journal of Food Science and Technology, 4(1), 15-21.

Makkar, H. (2003). Quantification of Tannins: a laboratory Manual. 2nd edition, International Center for Agricultural Research in the dry areas. Allepo. Syria.

Mapongmetsem, P., Kaptchie, V., Tefempam, H. (2017). Diversity of local fruit trees and their contribution in sustaining the rural livehood in the northem Cameroun. Ethiopian Journal of Environmental Studies and Management, 1, 32-46. . http://www.m.elewa.org/JAPS

Marigo, G. (1973). Méthode de fractionnement et d’estimation des composes phénoliques chez les végétaux. Analusis. 2, 109 – 110.

Molyneux, P. (2004). The use of stable free radical diphenylpicrilhydrazyl(DPPH) for estimating antioxidant activity. Songklanakarin Journal Sciences and Technology. 26(2), 211-219. https://www.researchgate.net/publication/237620105

Morabbi, A., Jamei, R., (2014). Free radical scavenging capacity and antioxidant activity of methanolic and ethanolic extracts of plum (Prunus domestica L.) in both fresh and dried samples. Avicenna Journal of Phytomedecine. 4(5), 343-353. https://www.researchgate.net/publication/268234948

Morand, C., Milenkovic, D. (2014). Polyphénols et santé vasculaire: mise en évidence du rôle direct des polyphénols dans les effets bénéfiques des agrumes dans la protection vasculaire. Innovations Agronomiques, 42, 47-62.

Nkhili, E. (2009). Polyphénols de l’Alimentation : Extraction, Intéractions avec les ions du fer et du cuivre, Oxydation et Pouvoir antioxydant. Thèse. Université de Cadi ayyad – Marrakech. Maroc.

Ochieng, C., Nandwa, B. (2010). Proximate composition, phenolic content and antioxidant activities of three black plum (Vitex sp.) fruits: preliminary results. Journal of Food Technology, 8, 118-125. https://doi.org/10.3923/jftech.2010.118.125. DOI: https://doi.org/10.3923/jftech.2010.118.125

Ou, B., Hampsch-woodill, M., Prior, R. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49, 4619-4626. https://doi.org/10.1021/jf010586o DOI: https://doi.org/10.1021/jf010586o

Prakash, D., Suri, S., Upadhyay, G., Singh, B. (2007). Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. International Journal of Food Sciences and Nutrition, 58, 18-28. https://doi.org/10.1080/09637480601093269 DOI: https://doi.org/10.1080/09637480601093269

Priéto, P., Pineda, M., Anguilar, M. (1999). Spectrophotometric quantification of antioxidant capacity through the formation of a phosphomolybdenum Complex : Specific application to the determination of Vitamin E. Analytical biochemistry, 269, 337-341. https://doi.org/10.1006/abio.1999.4019 DOI: https://doi.org/10.1006/abio.1999.4019

Rebecca, J., Daniel, J., Georgina, F., Jayne, E., Claire, M., Judi, A., Laurie, T., Jeremy, P. (2015). Chronic consumption of flavanonerich orange juice is associated with cognitive benefits : an 8-wk, randomized, doubleblind, placebo-controlled trial in healthy older adults. The American Journal of Clinical Nutrition, 101, 506-514. https://doi.org/10.3945/ajcn.114.088518. DOI: https://doi.org/10.3945/ajcn.114.088518

Scalbert, A., Manach, C., Morand, C., Remesy, C. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45, 287-306. https://doi.org/10.1080/1040869059096 DOI: https://doi.org/10.1080/1040869059096

Sharma, R., Samant, S., Nandi, S., Palni, S. (2013). Antioxidant Activities in Methanolic Extracts of Olea Ferruginea Royle Fruits. International Journal of Bioscience, Biochemistry and Bioinformatics, 3 (2), 154-156. https://doi.org/10.7763/IJBBB.2013.V3.185 DOI: https://doi.org/10.7763/IJBBB.2013.V3.185

Tchiégang, C., Dandjouna, A., Dzudie, T. (1999). Caractérisations physico-chimiques de cinq espèces fruitières endémiques de la savane camerounaise. Fruits. 54, 413-422.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-zevallos, L., Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guavafruit extracts. J. Food Compos. Anal, 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.0030 DOI: https://doi.org/10.1016/j.jfca.2006.01.003

World Health Organization. (2019). Global Status Report on noncommunicable diseases. Attaining the nine global noncommunicable diseases targets; a shared responsibility. https://www.who.int/ncds