Ketogenic Diet: A Multifaceted Approach to Weight Loss and Healthy Lifestyle
DOI:
https://doi.org/10.21048/IJND.2023.60.4.33239Keywords:
ketogenic diet, low carbohydrate diet, obese, ketone, weight lossAbstract
Because there is no complete, multifaceted assessment of the ketogenic diet (KD) in connection to health concerns, the study collated the information linked to the ketogenic diet's influence on the microbiome, epigenome, diabetes, weight reduction, cardiovascular health and cancer. The ketogenic diet has become the most popular diet in the world in recent years. It is the goal of the study work to learn more about the effects of a ketogenic diet on bodies, the mechanisms by which it treats neurological conditions, and the mechanisms by which it helps lose weight. The study uses a qualitative technique that relies on secondary data sources. This is a worldwide public health issue since obesity has risen in prevalence dramatically. To combat obesity, a variety of methods were used. There are several factors, one of which is food. The ketogenic diet is the most popular and commonly utilized diet for weight reduction. It was the goal of this literature review to explain how the ketogenic diet works and how it affects long- and short-term health outcomes. An examination of the short- and long-term consequences of the ketogenic diet reveals both its benefits and drawbacks. Chronically ill patients should seek the advice of a nutritionist or physician before attempting to follow this diet. Reducing animal-based protein consumption while increasing plant-based protein and polyunsaturated fat intake, water, fermented foods, and drinks are recommended for ketogenic dieters.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mayank Gautam, Manju, Kaushalendra Kumar, Neha Sharma
This work is licensed under a Creative Commons Attribution 4.0 International License.
All the articles published in IJND are distributed under a creative commons license. The journal allows the author(s) to hold the copyright of their work (all usages allowed except for commercial purpose).
Please contact us at editor@informaticsglobal.com for permissions related to commercial use of the article(s).
References
Ghada, S. Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutr., 2018, 10, 780. http://www.mdpi.com/2072-6643/10/6/780 DOI: https://doi.org/10.3390/nu10060780
Papandreou, D., Pavlou, E., Kalimeri, E. and Mavromichalis, I. The ketogenic diet in children with epilepsy. Br. J. Nutr., 2006 95, 5-13. https://www.cambridge.org/core/product/identifier/S000711450600002X/type/journal_article DOI: https://doi.org/10.1079/BJN20051591
Wajeed, M., Annamaraju, P. and Uppaluri, K.R. StatPearls Ketogenic Diet, 2022. http://www.ncbi.nlm.nih.gov/pubmed/29763005
Thanarat, S., Chomtho,S. and Siritientong, T. The carbohydrate content of medications prescribed to children treated with a ketogenic diet. J. Pharmacy Practice and Res., 2020, 50, 399-405. https://onlinelibrary.wiley.com/doi/10.1002/jppr.1642 DOI: https://doi.org/10.1002/jppr.1642
Eric, C.W., Mavropoulos, J., Yancy,W.S. and Volek, J.S. A review of low-carbohydrate ketogenic diets. Curr. Atherosclerosis Reports, 2003, 5, 476-483. http://link.springer.com/10.1007/s11883-003-0038-6 DOI: https://doi.org/10.1007/s11883-003-0038-6
Hartman, Adam, L.H., Gasior, M., Vining, E.P.G. and Rogawski, M.A. The neuropharmacology of the ketogenic diet. Pediat. Neurol., 2007, 36, 281-292. https://linkinghub.elsevier.com/retrieve/pii/S0887899407000938 DOI: https://doi.org/10.1016/j.pediatrneurol.2007.02.008
George, F.C. and Veech, R.L. Ketoacids? Good Medicine? Transactions of the American Clin. Climatolog. Assoc., 2003, 114, 149-163. http://www.ncbi.nlm.nih.gov/pubmed/12813917
Anna, C., Mráz, M. and Haluzík, M. Adipose tissue immune cells in obesity, type 2 diabetes mellitus and cardiovascular diseases. J. Endocrinol., 2022, 252, 1-22. https://joe.bioscientifica.com/view/journals/joe/252/1/JOE-21-0159.xml DOI: https://doi.org/10.1530/JOE-21-0159
Kathryn, D. and Banga, S. The potential health benefits of the Ketogenic Diet: A narrative review. Nutr., 2021, 13, 1654. https://www.mdpi.com/2072-6643/13/5/1654 DOI: https://doi.org/10.3390/nu13051654
Emily J.G., LeRoith, D. and Karnieli, E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mount Sinai Journal of Medicine: A J. Translat. Personalized Med., 2010, 77, 511-523. https://onlinelibrary.wiley.com/doi/10.1002/msj.20212. DOI: https://doi.org/10.1002/msj.20212
Arun, C., Duvoor, C., Dendi, V.S.R., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N.S., Montales, M.T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C.K., Lohani, G.P. and Mirza. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol., 2017, 8, 6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256065/ DOI: https://doi.org/10.3389/fendo.2017.00006
David, G. and Zied, E. The standard American diet and its relationship to the health status of Americans. Nutr. Clin. Prac., 2010, 25, 603-612. http://doi.wiley.com/10.1177/0884533610386234 DOI: https://doi.org/10.1177/0884533610386234
Paoli, A., Rubini, A., Volek, J.S. and Grimaldi, K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr., 2013, 67, 789-796. http://www.nature.com/articles/ejcn2013116. DOI: https://doi.org/10.1038/ejcn.2013.116
Arkadiusz, D., Wojtala, M., Pirola, L. and Balcerczyk, A. Modulation of cellular biochemistry, epigenetics and metabolomics by ketone bodies. Implications of the ketogenic diet in the physiology of the organism and pathological states. Nutr., 2020, 12, 788. https://www.mdpi.com/2072-6643/12/3/788 DOI: https://doi.org/10.3390/nu12030788
DiBaise, J.K., Zhang, H., Crowell, M.D., Brown, R.K., Decker, G.A. and Rittmann, B.E. Gut microbiota and its possible relationship with obesity. Mayo Clin. Proc., 2008, 83, 460-469. https://linkinghub.elsevier.com/retrieve/pii/S0025619611607027. DOI: https://doi.org/10.4065/83.4.460
Shilo, Smadar, S., Godneva, A., Rachmiel, M., Korem, T., Kolobkov, D., Karady, T., Bar, N., Wolf, B.C., Gashai, Y.G., Cohen, M., Levin, N.Z., Shehadeh, N., Gruber, N., Levran, N., Koren, S., Weinberger, A., Hamiel, O.P. and segal, E.. Prediction of personal glycemic responses to food for individuals with type 1 diabetes through integration of clinical and microbial data. Diabetes Care, 2022, 45, 502-511. https://diabetesjournals.org/care/article/45/3/502/139004/Prediction-of-Personal-Glycemic-Responses-to-Food DOI: https://doi.org/10.2337/dc21-1048
Sandra, M.P., Fito, M. and lga Castaner, O. Mediterranean Diet effects on type 2 diabetes prevention, disease progression, and related mechanisms- A review. Nutr., 2020, 12, 2236. https://www.mdpi.com/2072-6643/12/8/2236 DOI: https://doi.org/10.3390/nu12082236
Yang, Q., Liang, Q., Balakrishnan, B., Belobrajdic, D.P., Feng, Q.J. and Zhang, W. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutr., 2020, 12, 381. https://www.mdpi.com/2072-6643/12/2/381. DOI: https://doi.org/10.3390/nu12020381
Deanna, M.M. and Bland, J.S. Personalized lifestyle medicine: Relevance for nutrition and lifestyle recommendations. The Scientific World J., 2013, 2013, 1-14. http://www.hindawi.com/journals/tswj/2013/129841/. DOI: https://doi.org/10.1155/2013/129841
Kosoula, Zacharoula, K. and Barile, F.A. Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J. Pharmacol. Toxicol. Methods, 2012, 66, 215-220. https://linkinghub.elsevier.com/retrieve/pii/S1056871912000883. DOI: https://doi.org/10.1016/j.vascn.2012.08.001
McKay, J.A. and Mathers, J.C. Diet induced epigenetic changes and their implications for health. Acta Physiolog., 2011, 202, 103-118. https://onlinelibrary.wiley.com/doi/10.1111/j.1748-1716.2011.02278.x DOI: https://doi.org/10.1111/j.1748-1716.2011.02278.x
Montserrat, D., Munoz-Gonzalez, I., Cueva, C., Jimenez, -Giron, A., Sanchez-Patan, F., Santos-Buelga, C., Moreno-arribas, M.V. and Bartolome, B. A survey of modulation of gut microbiota by dietary polyphenols. BioMed. Res. Int., 2015, 2015, 1-15. http://www.hindawi.com/journals/bmri/2015/850902/ DOI: https://doi.org/10.1155/2015/850902
Gerwyn, M., Puri, B.K., Carvalho, A., Maes, M., Berk, M., Ruusunen, A. and Olive, L. Induced ketosis as a treatment for neuroprogressive disorders: Food for thought? The Int. J. Neuropsychopharmacol., 2020, 23, 366-384. DOI: https://doi.org/10.1093/ijnp/pyaa008
Zhu, X., Chen, Z., Shen, W., Huang, G., Sedivy, J.M., Wang, H. and Ju, Z. Inflammation, epigenetics and metabolism converge to cell senescence and ageing: The regulation and intervention. Signal Transduc. Targeted Therapy, 2021, 6, 245. https://www.nature.com/articles/s41392-021-00646-9 DOI: https://doi.org/10.1038/s41392-021-00646-9
Huang, Z., Wang, W., Huang, L., Guo, L. and Chen, C. Suppression of insulin secretion in the treatment of obesity: A systematic review and meta-analysis. Obesity (Silver Spring, Md.) 2020, 28, 2098-2106. DOI: https://doi.org/10.1002/oby.22955
Fumagalli, M., Camus, S.M., Diekmann, Y., Burke, A., Camus, M.D., Norman, P.J., Joseph, A., Abi-Rached, L., Benazzo, A., Rasteiro, R., Mathieson, I., Topf, M., Parham, P., Thomas, M.G. and Brodsky, F.M. Genetic Diversity of CHC22 Clathrin impacts its function in glucose metabolism. eLife, 2019, 8, e41517. https://elifesciences.org/articles/41517. DOI: https://doi.org/10.7554/eLife.41517
Atkinson, B.J., Griesel, B.A., King, C.D., Josey, M.A. and Olson, A.L. Moderate GLUT4 over expression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice. Diabetes, 2013, 62, 2249-2258. https://diabetesjournals.org/diabetes/article/62/7/2249/33819/Moderate-GLUT4-Overexpression-Improves-Insulin DOI: https://doi.org/10.2337/db12-1146
Shai, I., et al., Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. New England J. Med., 2008, 359, 229-241. http://www.nejm.org/doi/abs/10.1056/NEJMoa0708681 DOI: https://doi.org/10.1056/NEJMc081747
US Department of Health and Human Services. National Diabetes Statistics Report National Diabetes Statistics Report, 2020.
Wheatley, S.D., Deakin, T.A., Arjomandkhah, N.C., Hollinrake, P.B. and Reeves, T.E. Low carbohydrate dietary approaches for people with type 2 diabetes- A narrative review. Front. Nutr., 2021, 8, 687658. https://www.frontiersin.org/articles/10.3389/fnut.2021.687658/full DOI: https://doi.org/10.3389/fnut.2021.687658
Sherwani, S.I., Khan, H.A., Ekhzaimy, A., Masood, A. and Sakharkar, M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker Insights, 2016, 11, 38440. http://journals.sagepub.com/doi/10.4137/BMI.S38440 DOI: https://doi.org/10.4137/BMI.S38440
Bolla, A.M., Caretto, A., Laurenzi, A., Scavini, M. and Piemonti, L. Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutr., 2019, 11, 962. https://www.mdpi.com/2072-6643/11/5/962 DOI: https://doi.org/10.3390/nu11050962
Fran, C.R. Incorporation of the ketogenic diet in a youth with type 1 diabetes. Clin. Diabet., 2020, 38, 412-415. https://diabetesjournals.org/clinical/article/38/4/412/35422/Incorporation-of-the-Ketogenic-Diet-in-a-Youth DOI: https://doi.org/10.2337/cd20-0023
Alharbi, A. and Al-Sowayan, N.S. The effect of ketogenic-diet on health. Fd. Nutr. Sci., 2020, 11, 301-313. https://www.scirp.org/journal/doi.aspx?doi=10.4236/fns.2020.114022 DOI: https://doi.org/10.4236/fns.2020.114022
Blackburn, H. Seven countries study. Shinzo, 2012, 44, 784-787.
Lu, M., Lu, Q., Zhang,Y. and Tian, G. ApoB/ApoA1 Is an effective predictor of coronary heart disease risk in overweight and obesity. J. Biomed. Res., 2011, 25, 266-273. https://linkinghub.elsevier.com/retrieve/pii/S1674830111600365 DOI: https://doi.org/10.1016/S1674-8301(11)60036-5