Reliability Analysis of Dragline Subsystem using Bayesian Network Approach
DOI:
https://doi.org/10.18311/jmmf/2022/31958Keywords:
Dragline, Bayesian Network, Fault Tree Analysis, Reliability AnalysisAbstract
Ensuring high reliability and availability of draglines is imperative for the economic sustainability of a highly productive surface mining project. Draglines are very complex in design and consist of hundreds of components. Reliability modelling of a large complex system is difficult with conventional reliability analysis techniques. The dragging mechanism is a critical subsystem for the smooth operation of the draglines. This study uses the Bayesian Network (BN) model, mapped from the Fault Tree (FT), for the reliability analysis of Dragline. Sensitivity analysis identifies the critical components – helpful information for reliability management. The results demonstrate that three components of the dragging mechanism, namely, the drag motor system, drag brake and drag socket are primarily responsible for the poor reliability of the case study system. This study provides valuable information for maintenance planning of operating draglines and reliability blueprint of future dragline design.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ebeling CE. (1997). Intro to Reliability & Maintainability Engineering.pdf. Published online, 486.
Barabady J. (2005). Reliability and maintainability analysis of crushing plants in Jajarm bauxite mine of Iran. Proceedings of 1996 Annual Reliability and Maintainability Symposium, 109–115. https://doi.org/10.1109/RAMS.2005.1408347 DOI: https://doi.org/10.1109/RAMS.2005.1408347
Barabady J., & Kumar U. (2008). Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran. Reliability Engineering and System Safety, 93(4), 647–653. https://doi.org/10.1016/j.ress.2007.10.006 DOI: https://doi.org/10.1016/j.ress.2007.10.006
Rahimdel M. J., Ataei M., & Khalokakaei R., Hadi S. (2013). Reliability-based maintenance scheduling of hydraulic system of rotary drilling machines. International Journal of Mining Science and Technology, 23(5), 771-775. https://doi. org/10.1016/j.ijmst.2013.08.023 DOI: https://doi.org/10.1016/j.ijmst.2013.08.023
Samanta B., Sarkar B., & Mukherjee S. K. (2004). Reliability modelling and performance analyses of an LHD system in mining. Journal of the Southern African Institute of Mining and Metallurgy, 104(1), 1–8.
Kumar D., Gupta S., & Yadav P. K. (2020). Reliability, Availability and Maintainability (RAM) analysis of a dragline. Journal of Mines, Metals & Fuels, 68(2), 68–77.
Gustafson A., Schunnesson H., & Kumar U. (2015). Reliability analysis and comparison between automatic and manual load haul dump machines. Quality and Reliability Engineering International, 31(3), 523–531. https://doi. org/10.1002/qre.1610 DOI: https://doi.org/10.1002/qre.1610
Bobbio A., Portinale L., & Minichino M., Ciancamerla E. (2001). Improving the Analysis of Dependable Systems by mapping fault trees into bayesian networks. Realiability Engineering & System Safety, 71, 249–260. https://doi.org/10.1016/S0951-8320(00)00077-6 DOI: https://doi.org/10.1016/S0951-8320(00)00077-6
Weber P., Medina-Oliva G., Simon C., & Iung B. (2012). Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence, 25(4), 671–682. https://doi.org/10.1016/j.engappai.2010.06.002 DOI: https://doi.org/10.1016/j.engappai.2010.06.002
Langseth H., & Portinale L. (2007). Bayesian networks in reliability. Realiability Engineering & System Safety, 92(1), 92–108. https://doi.org/10.1016/j.ress.2005.11.037 DOI: https://doi.org/10.1016/j.ress.2005.11.037
Khorshidi H. A., Gunawan I., & Ibrahim M. Y. (2016). Data-driven system reliability and failure behavior modeling using FMECA. IEEE Transactions on Industrial Informatics, 12(3), 1253–1260. https://doi.org/10.1109/TII.2015.2431224 DOI: https://doi.org/10.1109/TII.2015.2431224
Zhang Q., Zhou C., Tian Y. C., Xiong N., & Qin Y., Hu B. (2018). A fuzzy probability bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Transactions on Industrial Informatics, 14(6), 2497–2506. https://doi.org/10.1109/TII.2017.2768998 DOI: https://doi.org/10.1109/TII.2017.2768998
Liu Z., Liu Y., Lei W. X., & Cai B. (2018). Risk analysis of subsea blowout preventer by mapping GO models into Bayesian networks. Journal of Loss Prevention in the Process Industries, 52, 54–65. https://doi.org/10.1016/j. jlp.2018.01.014 DOI: https://doi.org/10.1016/j.jlp.2018.01.014
Xie S., Dong S., Chen Y., Peng Y., & Li X. (2021). A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory. Realiability Engineering & System Safety, 215. https://doi.org/10.1016/j.ress.2021.107791 DOI: https://doi.org/10.1016/j.ress.2021.107791
Cai B., Liu Y., & Fan Q. (2016). A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels. Realiability Engineering & System Safety, 150, 105–115. https://doi.org/10.1016/j. ress.2016.01.018 DOI: https://doi.org/10.1016/j.ress.2016.01.018
Cai B., Xie M., Liu Y., Liu Y., & Feng Q. (2018). Availability-based engineering resilience metric and its corresponding evaluation methodology. Realiability Engineering & System Safety, 172, 216–224. https://doi. org/10.1016/j.ress.2017.12.021 DOI: https://doi.org/10.1016/j.ress.2017.12.021
Cai B., Liu Y., & Xie M. (2017). A dynamic-bayesiannetwork- based fault diagnosis methodology considering transient and intermittent faults. IEEE Transactions on Automation Science and Engineering, 14(1), 276–285. https://doi.org/10.1109/TASE.2016.2574875 DOI: https://doi.org/10.1109/TASE.2016.2574875
Luo Y., Li K., Li Y., Cai D., Zhao C., & Meng Q. (2017). Three-Layer Bayesian Network for Classification of Complex Power Quality Disturbances. IEEE Transactions on Industrial Informatics, 14(9), 3997–4006. https://doi. org/10.1109/TII.2017.2785321 DOI: https://doi.org/10.1109/TII.2017.2785321
Wang Z., Wang Z., Gu X., He S., & Yan Z. (2017). Feature selection based on Bayesian network for chiller fault diagnosis from the perspective of field applications. Applied Thermal Engineering, 129, 674–683. https://doi. org/10.1016/j.applthermaleng.2017.10.079 DOI: https://doi.org/10.1016/j.applthermaleng.2017.10.079
Sahu A. R., & Palei S. K. (2020). Real-time fault diagnosis of HEMM using Bayesian Network: A case study on drag system of dragline. Engineering Failure Analysis, 118. https://doi.org/10.1016/j.engfailanal.2020.104917 DOI: https://doi.org/10.1016/j.engfailanal.2020.104917
Sahu A. R., & Palei S. K. (2022). Fault analysis of dragline subsystem using bayesian network model. Realiability Engineering & System Safety. https://doi.org/10.1016/j.ress.2022.108579 DOI: https://doi.org/10.1016/j.ress.2022.108579
Cai B., Kong X., Liu Y., et al. (2019). Application of Bayesian Networks in reliability evaluation. IEEE Transactions on Industrial Informatics, 15(4), 2146–2157. https://doi.org/10.1109/TII.2018.2858281 DOI: https://doi.org/10.1109/TII.2018.2858281
Sigurdsson J. H., Walls L. A., & Quigley J. L. (2001). Bayesian belief nets for managing expert judgement and modelling reliability. Quality and Reliability Engineering International, 17(3), 181–190. https://doi.org/10.1002/qre.410 DOI: https://doi.org/10.1002/qre.410
Montani S., Portinale L., Bobbio A., & Codetta-Raiteri D. (2008). Radyban: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks. Realiability Engineering & System Safety, 93(7), 922–932. https://doi.org/10.1016/j.ress.2007.03.013 DOI: https://doi.org/10.1016/j.ress.2007.03.013
Weber P., & Jouffe L. (2006). Complex system reliability modelling with Dynamic Object Oriented Bayesian Networks (DOOBN). Realiability Engineering & System Safety, 91(2), 149–162. https://doi.org/10.1016/j.ress.2005.03.006 DOI: https://doi.org/10.1016/j.ress.2005.03.006
Torres-Toledano J. É. G., & Sucar L. E. (1998). Bayesian networks for reliability analysis of complex systems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes, 1484, 195–206. https://doi.org/10.1007/3-540-49795-1_17 DOI: https://doi.org/10.1007/3-540-49795-1_17
Kim M. C. (2011). Reliability block diagram with general gates and its application to system reliability analysis. Annals of Nuclear Energy, 38(11), 2456–2461. https://doi. org/10.1016/j.anucene.2011.07.013 DOI: https://doi.org/10.1016/j.anucene.2011.07.013
Li X., Li Y. F., Li H., & Huang H. Z. (2021). An algorithm of discrete-time Bayesian network for reliability analysis of multilevel system with warm spare gate. Quality and Reliability Engineering International, 37(3), 1116–1134. https://doi.org/10.1002/qre.2784 DOI: https://doi.org/10.1002/qre.2784
Cai B., Liu Y., Liu Z., Tian X., Dong X., & Yu S. (2012). Using Bayesian networks in reliability evaluation for subsea blowout preventer control system. Realiability Engineering & System Safety, 108, 32–41. https://doi.org/10.1016/j. ress.2012.07.006 DOI: https://doi.org/10.1016/j.ress.2012.07.006
Cai B., Liu Y., Fan Q., et al. (2013). Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenance. Engineering Applications of Artificial Intelligence, 26(10), 2661–2672. https://doi.org/10.1016/j.engappai.2013.08.011 DOI: https://doi.org/10.1016/j.engappai.2013.08.011
Doguc O., & Ramirez-Marquez J. E. (2009). A generic method for estimating system reliability using Bayesian networks. Realiability Engineering & System Safety, 94(2), 542–550. https://doi.org/10.1016/j.ress.2008.06.009 DOI: https://doi.org/10.1016/j.ress.2008.06.009
Neil M., & Marquez D. (2012). Availability modelling of repairable systems using Bayesian networks. Engineering Applications of Artificial Intelligence, 25(4), 698–704. https://doi.org/10.1016/j.engappai.2010.06.003 DOI: https://doi.org/10.1016/j.engappai.2010.06.003
Codetta-Raiteri D., Bobbio A., Montani S., & Portinale L. (2012). A dynamic Bayesian network based framework to evaluate cascading effects in a power grid. Engineering Applications of Artificial Intelligence, 25(4), 683-697. https:// doi.org/10.1016/j.engappai.2010.06.005 DOI: https://doi.org/10.1016/j.engappai.2010.06.005
Zwirglmaier K., & Straub D. (2016). A discretization procedure for rare events in Bayesian networks. Realiability Engineering & System Safety, 153, 96–109. https://doi.org/10.1016/j.ress.2016.04.008 DOI: https://doi.org/10.1016/j.ress.2016.04.008
Marquez D., Neil M., & Fenton N. (2010). Improved reliability modeling using Bayesian networks and dynamic discretization. Realiability Engineering & System Safety, 95(4), 412–425. https://doi.org/10.1016/j.ress.2009.11.012 DOI: https://doi.org/10.1016/j.ress.2009.11.012
Langseth H, Nielsen T. D., Rumí R., & Salmerón A. (2009). Inference in hybrid Bayesian networks. Realiability Engineering & System Safety, 94(10), 1499–1509. https://doi.org/10.1016/j.ress.2009.02.027 DOI: https://doi.org/10.1016/j.ress.2009.02.027
Bensi M., Der K. A., & Straub D. (2013). Efficient Bayesian network modeling of systems. Realiability Engineering & System Safety, 112, 200–213. https://doi.org/10.1016/j.ress.2012.11.017 DOI: https://doi.org/10.1016/j.ress.2012.11.017
Vaurio J. K. (2002). Treatment of general dependencies in system fault-tree and risk analysis. IEEE Transactions on Reliability, 51(3), 278–287. https://doi.org/10.1109/TR.2002.801848 DOI: https://doi.org/10.1109/TR.2002.801848
Gupta S., & Bhattacharya J. (2007). Reliability analysis of a conveyor system using hybrid data. Quality and Reliability Engineering International, 23(7), 867–882. https://doi.org/10.1002/qre.843 DOI: https://doi.org/10.1002/qre.843
Ramesh V., & Saravannan R. (2011). Reliability assessment of a co-generation power plant in a sugar mill using fault tree analysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. 33(12), 1168–1183. https://doi. org/10.1080/15567031003681978 DOI: https://doi.org/10.1080/15567031003681978
Goodman G. V. R. (1988). An assessment of coal mine escapeway reliability using fault tree analysis. International Journal of Mining Science and Technology, 7(2), 205–215. https://doi.org/10.1016/S0167-9031(88)90610-X DOI: https://doi.org/10.1016/S0167-9031(88)90610-X
Borunda M., Jaramillo O. A., Reyes A., & Ibargüengoytia P. H. (2016). Bayesian networks in renewable energy systems: A bibliographical survey. Renewable and Sustainable Energy Reviews, 62, 32–45. https://doi.org/10.1016/j. rser.2016.04.030 DOI: https://doi.org/10.1016/j.rser.2016.04.030
Rebello S., Yu H., & Ma L. (2018). An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model. Realiability Engineering & System Safety, 180, 124–135. https://doi. org/10.1016/j.ress.2018.07.002 DOI: https://doi.org/10.1016/j.ress.2018.07.002
Jensen F. V., & Nielsen T. D. (2007). Bayesian networks and decision graphs. Springer Berlin Heidelberg. https://doi. org/10.1007/978-0-387-68282-2 DOI: https://doi.org/10.1007/978-0-387-68282-2
Adnan D. (2009). Modeling and Reasoning with Bayesian Networks. https://doi.org/10.1017/CBO9780511811357. PMCid:PMC3118870 DOI: https://doi.org/10.1017/CBO9780511811357
Wen C. X., Member S., Anantha G., & Lin X. (2008). Improving bayesian network structure learning with mutual information-based node ordering in the K2 algorithm. IEEE Transactions on Knowledge and Data Engineering, 20(5), 1–13. https://doi.org/10.1109/TKDE.2007.190732 DOI: https://doi.org/10.1109/TKDE.2007.190732
Naidoo G. M., & Naidoo M. K.. (2021). Digital communication. https://doi.org/10.4018/978-1-7998-6745-6.ch010 PMid:33874900 PMCid:PMC8054353 DOI: https://doi.org/10.4018/978-1-7998-6745-6.ch010