Influence of Alloying Element and Ageing on Microstructure and Dry Sliding Wear Behaviour of Cu-Zn-xNi Alloy

Jump To References Section

Authors

  • Department of Mechanical Engineering, C Byregowda Institute of Technology, Kolar – 563101, Karnataka ,IN
  • Department of Mechanical Engineering, C Byregowda Institute of Technology, Kolar – 563101, Karnataka ,IN
  • Department of Mechanical Engineering, BMSCE, Bengaluru – 560019, Karnataka ,IN
  • Department of Mechanical Engineering, Bearys Institute of Technology, Mangalore – 574153, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/31962

Keywords:

Brass, Casting, Friction, Microstructure, Microhardness, Wear

Abstract

In this paper, we look at how different nickel concentrations (4, 8, and 12 percent) affect the microstructure, microhardness, and dry sliding wear behaviour of a Cu-Zn-xNi alloy. The alloy was created using a casting technique at 1100°C and a heat treatment method that included solution treatment at 600°C and ageing at 450°C for four hours each. Microstructure studies were performed on the developed alloys using a scanning electron microscope (SEM). To investigate alloy indentation resistance, an ASTM E384 microhardness test was performed. Tribological properties such as friction and wear were investigated using a pin on disc tribometer and a dry sliding wear test according to the ASTM G99 standard. SEM studies revealed α-phase (copper) and solid solution of zinc in cast alloys, while aged alloys revealed a similar structure but with the addition of Cu2NiZn precipitates. The microhardness values improved as the Ni content and ageing increased. The decrease in secondary dendrite arm spacing with increasing Ni content and ageing was attributed to the improvement. The coefficient of friction decreased as the load increased, but increased as the sliding velocity increased. However, as loads and sliding velocities increased, so did the wear rate. For the majority of loads and sliding velocities, the worn surface demonstrated abrasion as the dominant wear mechanism.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-11-25

How to Cite

A. N. Santhosh, S. Aprameyan, Suresh Erannagari, & Vasantha Kumar. (2022). Influence of Alloying Element and Ageing on Microstructure and Dry Sliding Wear Behaviour of Cu-Zn-xNi Alloy. Journal of Mines, Metals and Fuels, 70(7), 380–394. https://doi.org/10.18311/jmmf/2022/31962

Issue

Section

Articles

 

References

Freudenberger J., & Warlimont H. (2018). Copper and copper alloys. In: W. Martienssen, H. Warlimont (Eds.), Springer Handbook of Materials Data, Springer Nature Switzerland AG, 293-301. https://doi.org/10.1007/978-3- 319-69743-7_12

Davis J. R. (2001). Copper and Copper Alloys, ASM Specialty Handbook, ASM International, Materials Park, OH.

Stewart M. (2021). Materials of construction, In: Surface Production Operations, Volume 5: Pressure Vessels, Heat Exchangers, and Aboveground Storage Tanks: Design, Construction, Inspection, and Testing, Elsevier Inc., 61–92. https://doi.org/10.1016/B978-0-12-803722-5.00003-3. PMCid:PMC8444439 DOI: https://doi.org/10.1016/B978-0-12-803722-5.00003-3

Prasad B. K. (1997). Dry sliding wear response of some bearing alloys as influenced by the nature of microconstituents and sliding conditions. Metallurgical and Materials Transactions A, 28, 809–815. https://doi.org/10.1007/s11661-997-0067-9 DOI: https://doi.org/10.1007/s11661-997-1008-3

Davim J. P. (2000). An experimental study of the tribological behaviour of the brass/steel pair. Journal of Materials Processing Technology, 100, 273–277. https://doi.org/10.1016/S0924-0136(99)00491-4

Sadykov F. A., Barykin N. P., & Aslanyan I. R. (1999). Wear of copper and its alloys with submicrocrystalline structure. Wear, 225–229, 649–655. https://doi.org/10.1016/S0043-1648(98)00374-3 DOI: https://doi.org/10.1016/S0043-1648(98)00374-3

Davim J. P. (2000). An experimental study of the tribological behaviour of the brass/steel pair. Journal of Materials Processing Technology, 100, 273–277. https://doi.org/10.1016/S0924-0136(99)00491-4 DOI: https://doi.org/10.1016/S0924-0136(99)00491-4

Unlu B. S. (2009). Investigation of tribological and mechanical properties of metal bearings. Bulletin of Materials Science, 32, 451–457. https://doi.org/10.1007/s12034-009-0066-0 DOI: https://doi.org/10.1007/s12034-009-0066-0

Kucukomeroglu T, & Kara L. (2014). The friction and wear properties of CuZn39Pb3 alloys under atmospheric and vacuum conditions, Wear, 309, 21–28. https://doi.org/10.1016/j.wear.2013.10.003 DOI: https://doi.org/10.1016/j.wear.2013.10.003

Moshkovich A., Perfilyev V., Lapsker I., & Rapoport L. (2014) Friction, wear and plastic deformation of Cu and α/β brass under lubrication conditions, Wear, 320, 34–40. https://doi.org/10.1016/j.wear.2014.08.016 DOI: https://doi.org/10.1016/j.wear.2014.08.016

Chen W., Jia Y., Yi J., Wang M., Derby B., & Lei Q. (2017). Effect of addition of Ni and Si on the microstructure and mechanical properties of Cu-Zn alloys. Journal of Materials Research, 32, 3137–3145. https://doi.org/10.1557/jmr.2017.145 DOI: https://doi.org/10.1557/jmr.2017.145

Wang P., Jie J., Tong L., Li T. (2019). Study of the mechanical, structural, and electrical properties and annealing effect of a Cu-30Zn-1Ni-0.2Si alloy fabricated using cryogenic rolling. Materials Research Express, 6(11). https://doi.org/10.1088/2053-1591/ab49cd DOI: https://doi.org/10.1088/2053-1591/ab49cd

Joszt K., Stobrawa J., & Zaborowski G. (2013). Ordering process in Cu-18Ni-26Zn alloy. Metals Technology, 7, 424– 427. https://doi.org/10.1179/030716980803286775 DOI: https://doi.org/10.1179/030716980803286775

Moussa M. E., & Ibrahim K. M. (2022). Effect of ultrasonic vibration treatment on microstructure, tensile properties, hardness and wear behaviour of brass alloy. International Journal of Metalcasting. https://doi.org/10.1007/s40962-021-00748-8 DOI: https://doi.org/10.1007/s40962-021-00748-8

Knych T., Smyrak B., & Walkowicz M. Research on the influence of the casting speed on the structure and properties of oxygen-free copper wires, AGH University of Science and Technology, Poland; 2011.

Yan Z., Chen M., Yang J., Yang L., & Gao H. (2013). Grain refinement of CuNi10Fe1Mn alloy by SiC nanoparticles and electromagnetic stirring. Materials and Manufacturing Processes, 28, 957–961. https://doi.org/10.1080/10426914.2013.763971 DOI: https://doi.org/10.1080/10426914.2013.763971

Bagherian E., Fan Y., Cooper M., Frame B., Abdolvand A. (2016). Effect of water flow rate, casting speed, alloying elements and pull distance on tensile strength, elongation percentage and microstructure of continuous cast copper alloys. Metallurgical Research &Technology, 113, 308. https://doi.org/10.1051/metal/2016006 DOI: https://doi.org/10.1051/metal/2016006

Reis B. P., Franca R. P., Spim J. A., Garcia A., da Costa E. M., & Santos C. A. (2013). The effects of dendritic arm spacing (as-cast) and aging time (solution heat-treated) of Al-Cu alloy on hardness. Journal of Alloys and Compounds, 549, 324–335. https://doi.org/10.1016/j.jallcom.2012.09.041 DOI: https://doi.org/10.1016/j.jallcom.2012.09.041

Jang H. W., & Hong J-W. (2020). Influence of zinc content on the mechanical behaviors of Cu-Zn alloys by molecular dynamics. Materials (Basel), 13(9), 2062. https://doi.org/10.3390/ma13092062. PMid:32365697. PMCid:PMC7254338 DOI: https://doi.org/10.3390/ma13092062

Igelegbai E. E., Alo O. A., Adeodu A. O., & Daniyan I. A. (2016). Evaluation of mechanical and microstructural properties of α-brass alloy produced from scrap copper and zinc metal through sand casting process. Journal of Minerals and Materials Characterization and Engineering, 5(1), 18–28. https://doi.org/10.4236/jmmce.2017.51002 DOI: https://doi.org/10.4236/jmmce.2017.51002

Toulfatzis A. I., Pantazopoulos G. A., & Paipetis A. S. (2016). Microstructure and properties of lead-free brasses using post-processing heat treatment cycles. Materials Science and Technology, 32, 1771–1781. https://doi.org/10.1080/02670836.2016.1221493 DOI: https://doi.org/10.1080/02670836.2016.1221493

Purcek G., Savaskan T., Kucukomeroglu T., Murphy S. (2002). Dry sliding friction and wear properties of zincbased alloys. Wear, 252, 894–901. https://doi.org/10.1016/S0043-1648(02)00050-9 DOI: https://doi.org/10.1016/S0043-1648(02)00050-9

Kim H. S., Kim W. Y., & Song K. H. (2012). Effect of post-heat treatment in ECAP processed Cu-40%Zn brass. Journal of Alloys and Compounds, 536, S200–S203. https://doi.org/10.1016/j.jallcom.2011.11.079 DOI: https://doi.org/10.1016/j.jallcom.2011.11.079