Predicting the Effective Properties of Unidirectional Composites Through Numerical Simulation

Jump To References Section

Authors

  • Department of Mechanical Engineering, Acharya Institute of Technology, Bengaluru ,IN
  • Department of Mechanical Engineering, Acharya Institute of Technology, Bengaluru ,IN
  • Department of Industrial Engineering & Management, Siddaganga Institute of Technology, Tumakuru, Karnataka ,IN
  • Department of Mechanical Engineering, Acharya Institute of Technology, Bengaluru ,IN
  • Department of Mechanical Engineering, Acharya Institute of Technology, Bengaluru ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/33392

Keywords:

Representative Volume Element; finite element analysis; isotropic; Composites; Stress

Abstract

The Mechanical properties of composites are fundamental for the design of fiber composite structures. A new finite element analysis (FEA) technique is established to determine the effective properties of composite materials. The technique involves finite element analysis of Representative Volume Element (RVE). The boundary condition plays an important role in the analysis of composite RVE. It is important to predict the correct boundary conditions (BCs) to be applied on RVE before the analysis of composite RVE. In order for the deformation in RVE to accurately reflect the deformation within the composite structure, the BCs must be suitable. The appropriate boundary conditions to be applied are determined in this study using FE analysis of isotropic RVE. The composite RVE is subjected to the thusly acquired boundary conditions, and the resulting material property along that direction is given a unit displacement along the necessary direction. Averaging the stress - strain fields generated from the analysis yields the effective properties of unidirectional fibre reinforced composite material.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-04-13

How to Cite

Praveen B. B., Sanman S., Anil K. C., Prashanth K. P., & Lava Kumar K. S. (2023). Predicting the Effective Properties of Unidirectional Composites Through Numerical Simulation. Journal of Mines, Metals and Fuels, 71(2), 267–276. https://doi.org/10.18311/jmmf/2023/33392

 

References

Hashin, Z. and Rosen, B. W., (1964): The elastic moduli of fiber-reinforced materials. ASME J. Appl. Mech., 31, pp. 223-232.

Whitney, J. M. and Riley, M. B., (1966): Elastic properties of fiber reinforced composite materials. AlAA J., 4, pp. 1537-1542.

Sun, C. T. and Chen, J. L., (1990): A micromechanical model for plastic behaviour of fibrous composites. Cornp. Sci. Technol., 40, pp. 115-129.

Girisha K G, K.V. Sreenivas Rao, Anil.K.C, Sanman.S (2017): “Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel”, Materials Science and Engineering, 191 (2017) 012022 DOI:10.1088/1757-899X/191/1/012022

Anil, K. C., J. Kumarswamy, M. Reddy, and B. Prakash. (2022): “Mechanical Behaviour and Fractured Surface Analysis of Bauxite Residue & Graphite Reinforced Aluminium Hybrid Composites.” Frattura ed Integrità Strutturale 62 (2022): 168-179.

Chamis, C.C., (1984): Simplified composite micromechanics equations for hygral, thermal and mechanical properties. SAMPE Quart. pp. 14-23.

Tang, T. (2008): Variational Asymptotic Micromechanics Modelling of Composite Materials. International Journal of Solids and Structures, 44.

K.C. Anil, J. Kumaraswamy, Akash, S. Sanman, Experimental arrangement for estimation of metal-mold boundary heat flux during gravity chill casting, Materials Today: Proceedings, 2022, https://doi.org/ 10.1016/j.matpr.2022.07.399.

C.T. Sun and R. S. Vaidya., (1996): Prediction of Composite Properties from a Representative Volume Element. Cornp. Sci. Technol., 56, pp. 171-179

Hill, R., (1963): Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids, 11, pp. 357-372.

Harishchandra et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 149 012026, DOI 10.1088/1757-899X/149/1/012026

Kenaga, D., Doyle, J. F. and Sun, C. T., (1987): The characterization of boron/aluminium in the nonlinear range as an orthotropic elastic plastic material. Comp. Mater., 27, pp. 516-31.

Anil K.C, M.G. Vikas, Shanmukha Teja B, K.V. Sreenivas Rao, (2017): “Effect of cutting parameters on surface finish and machinability of graphite reinforced Al- 8011matrix composite” Materials Science and Engineering, 191, 012025. DOI:10.1088/1757-899X/191/ 1/012025

K.V. Sreenivas Rao, Anil.K.C, Akash, Girisha. K. G, (2017): “Effect of Particle Size on Mechanical Properties of Al-RMp Metal Matrix Composites”, Materials Today: Proceedings, Science Direct, pp. 11154–11157. DOI: 10.1016/j.matpr.2017.08.080

Harshavardhan R, Anil K.C. K.V Sreenivas Rao, (2018): “Evaluation of Fracture Toughness of Red Mud Reinforced Aluminium Matrix Composite” Materials Today: Proceedings 5, pp. 24854–24861. DOI: 10.1016/ j.matpr.2018.10.284

Sanman S, Prashanth K P, Anil K C, Venkatesha B K, Gopal Krishna U B and Yuvaraj L (2021): “Effect of percentage of reinforcement particulates on the corrosion behaviour of aluminium boron carbide composites” Journal of Mines, Metals & Fuels, 69, No.12A, PP. 250-254. DOI: 10.18311/jmmf/2021/30111

Harishchandra, R.S. Kadadevaramath and K.C. Anil, (2016) “Effect of tool material on machinability of TiCp reinforced Al-1100 composite” IOP Conf. Series: Materials Science and Engineering 149, 012026. DOI:10.1088/1757-899X/149/1/012026

K. V. Sreenivasrao, Anil. K. C., Girish K. G. and Akash, (2016): “Mechanical characterization of red mud reinforced Al-8011 matrix composite” ARPN Journal of Engineering and Applied Sciences, 11(1), pp. 29-234

ABAQUS. Abaqus 6.14 user’s Guide.

J. Kumaraswamy, V. Kumar and G. Purushotham, (2021): Thermal analysis of nickel alloy/Al2O3/TiO2 hybrid metal matrix composite in automotive engine exhaust valve using FEA method, Journal of Thermal Engineering, 7 (3), pp. 415-428. DOI:10.18186/ thermal.882965.

Sandeep Khelge, Vijaya Kumar, Vidyasagar Shetty and Kumaraswamy J, (2022): Effect of reinforcement particles on the mechanical and wear properties of aluminium alloy composites: Review, Materials Today: Proceedings,52(3), pp. 571-576, DOI: 10.1016/ j.matpr.2021.09.525.

J Kumaraswamy, Vijaya Kumar, G Purushotham, Evaluation of the microstructure and thermal properties of (ASTM A 494 M grade) nickel alloy hybrid metal matrix composites processed by sand mold casting, International Journal of Ambient Energy, 42, pp. 1- 10. DOI: 10.1080/01430750.2021.1927836.

K. Jayappa, V. Kumar, and G. G. Purushotham, (2021): “Effect of reinforcements on mechanical properties of nickel alloy hybrid metal matrix composites processed by sand mold technique,” Applied Science and Engineering Progress, 14 (1), pp. 44–51, DOI: 10.14416/j.asep.2020.11.001.

Sreenivas Rao, K. V., and S. Sanman. (2015): “Analysis of Cooling Curves, Microstructure and Properties of Chill Cast Al-B4C Composites.” Advanced Materials Research, vol. 1101, Trans Tech Publications, Ltd., Apr. 2015, pp. 32–35.

Sanman, S., Prashanth, K.P., Lokesh, G.N. (2021): Optimization of Wear Behaviour of Aluminum– Boron Carbide Composites Using Factorial Analysis. In: Ramesh, C.S., Ghosh, P., Natarajan, E. (eds) Recent Trends in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https:// doi.org/10.1007/978-981-16-2086-7_3.

J. Kumaraswamy, K.C. Anil, Vidyasagar Shetty, (2022): Development of Ni-Cu based alloy hybrid composites through induction furnace casting, Materials Today: Proceedings, https://doi.org/10.1016/ j.matpr.2022.09.215.