Use of Oxide Nanofluids as Electrolytes in Sodium Ion Supercapacitor
DOI:
https://doi.org/10.18311/jmmf/2023/33718Keywords:
nanofluids, electrolyte, sodiumAbstract
This work studies the use of novel multifunctional materials for a sodium ion supercapacitor. The multifunctional material used was nanosized perovskite oxide in combination with vanadium pentoxide (V2O5), or modification of electrolyte solution of 1M NaClO4 in propylene carbonate with nanofluids of copper oxide and iron oxide in ethanol. These nano-oxides are incorporated in addition to cathode nanomaterials like multiwalled carbon nanotubes (MWCNT), sulphur, cellulose, activated carbon. It is seen that use of the nanosized perovskite oxide and vanadium pentoxide results in higher cathodic current, higher gram capacitance of 33 F/g, energy density of 125 Wh/kg, power density of 20 kW/kg and current carrying capacity of 200 mAh/g and are comparable to the best values in literature. Applications for the work is in the areas of high energy and power density sodium ion capacitors and batteries that can be used in electronics, household applications.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
E Paek, J. Ding, D. Mitlin, W Hu, (2018): Chemical Reviews, 118(14), 6457-6498.
H. Liu, F. Qu, S. Yao, X. Zhang, X. Wu, H. Xiao, (2016): Materials International, 26(3), 271-275.
S. Passerini, M. Weil, D. Buchholz, J. Peters, (2016): Energy & Environmental Science, 9, 1744-1751.
D. Chao, H. J. Fan, Q. Yan, H. Wang, C. Zhu, (2017): Advanced Materials, 29(46), 1702093.
J. I. Miyamoto, S. Ishimoto, W. Naoi, K. Naoi, (2012): Energy & Environmental Science, 5, 9363-9373.
A. Eftekhari, D. W. Kim, (2018): Journal of power sources, 395, 336-348.
D. Bin, F. Wang, A. G. Tamirat, L. Suo, Y. Wang, C. Wang, Y. Xia, (2018): Advanced Energy Materials, 8(17), 1703008.
Kim H, Hong J, Park Y, Kim J, Hwang I, Kang K. (2015): Advanced Functional Materials. 25, 534-541.
R. T. Vinay, K. Venkatesh, K. Chaitra, N. Kathyayini, N. Nagaraju, (2016): Journal of Power Sources, 309, 212-220.
Q. Li, L. Fan, J. Chen, Y. Lu, X. Kong, (2016): Green energy and environment, 1(1), 18-42.
Jie Tang, Lu-Chang Qin, Jun Ma, Qian Cheng, Norio Shinya, Han Zhang, (2011): Physical Chemistry. Chemical Physics, 13, 17615-17624.
NurIzzah Binti Abd Azes, Nurul Huda Yusoff, Mohd Ali Sulaiman, Nurhafizah Najmi, (2017): Journal of Industrial Technology, 25(1), 12-18.
K. Vignarooban, A. Elango, R. Kushagra, A. M. Kannan, B.E. Mellander, P. Badami, X. Xu, C. Nam, T. G. Tucker, (2016,): International Jornal of Hydrogen Energy, 41(4), 2829-2846.
John B. Cook, HyungSeok Kim, Terri C. Lin, Chun Han Lai, Bruce Dunn, Sarah H. Tolbert, (2016): Advanced Energy Materials, 7, 1601283.
R. George, K.R.V. Subramanian, F. Jan, A. Sidhardha, (2022): Materials Letters, 313, 131767.
Nikitha R Reddy, K.R.V. Subramanian, R. George, (2022): Accepted to International Journal of ambient energy.